Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemphyschem ; 18(19): 2739-2746, 2017 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-28691276

RESUMEN

The diffusivity of CO2 and N2 in the small-pore titanium-based bis(phosphonate) metal-organic framework MIL-91(Ti) was explored by using a combination of quasielastic neutron scattering measurements and molecular dynamics simulations. These two techniques were used to determine the loading dependence of the self-diffusivity, corrected and transport diffusivities of these two gases to complement our previously reported thermodynamics study, which revealed that this material was a promising candidate for CO2 /N2 separation. The calculated and measured diffusivities of both gases were shown to be of an order of magnitude sufficiently high, from 10-9 to 10-10  m2 s-1 , and N2 diffused faster than CO2 through the small channel of MIL-91(Ti). Consequently, the separation process does not involve any kinetic-driven limitations. This study further revealed that the global diffusion mechanism involves motions of gases along the channels by a jump sequence, and the residence times for CO2 in the region close to the specific PO⋅⋅⋅H⋅⋅⋅N zwitterionic sites are much higher than those for N2 , which explains the faster diffusivity observed for N2 .

2.
Sci Rep ; 7: 40207, 2017 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-28106047

RESUMEN

Nanoporous silicon produced by electrochemical etching of highly B-doped p-type silicon wafers can be prepared with tubular pores imbedded in a silicon matrix. Such materials have found many technological applications and provide a useful model system for studying phase transitions under confinement. This paper reports a joint experimental and simulation study of diffusion in such materials, covering displacements from molecular dimensions up to tens of micrometers with carefully selected probe molecules. In addition to mass transfer through the channels, diffusion (at much smaller rates) is also found to occur in directions perpendicular to the channels, thus providing clear evidence of connectivity. With increasing displacements, propagation in both axial and transversal directions is progressively retarded, suggesting a scale-dependent, hierarchical distribution of transport resistances ("constrictions" in the channels) and of shortcuts (connecting "bridges") between adjacent channels. The experimental evidence from these studies is confirmed by molecular dynamics (MD) simulation in the range of atomistic displacements and rationalized with a simple model of statistically distributed "constrictions" and "bridges" for displacements in the micrometer range via dynamic Monte Carlo (DMC) simulation. Both ranges are demonstrated to be mutually transferrable by DMC simulations based on the pore space topology determined by electron tomography.

3.
Angew Chem Int Ed Engl ; 55(12): 3919-24, 2016 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-26889765

RESUMEN

The water stable UiO-66(Zr)-(CO2H)2 MOF exhibits a superprotonic conductivity of 2.3×10(-3)  S cm(-1) at 90 °C and 95 % relative humidity. Quasi-elastic neutron scattering measurements combined with aMS-EVB3 molecular dynamics simulations were able to probe individually the dynamics of both confined protons and water molecules and to further reveal that the proton transport is assisted by the formation of a hydrogen-bonded water network that spans from the tetrahedral to the octahedral cages of this MOF. This is the first joint experimental/modeling study that unambiguously elucidates the proton-conduction mechanism at the molecular level in a highly conductive MOF.

4.
J Phys Chem C Nanomater Interfaces ; 118(22): 11784-11798, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24932319

RESUMEN

We investigate the influence of structural heterogeneity on the transport properties of simple gases in a Hybrid Reverse Monte Carlo (HRMC) constructed model of silicon carbide-derived carbon (SiC-DC). The energy landscape of the system is determined based on free energy analysis of the atomistic model. The overall energy barriers of the system for different gases are computed along with important properties, such as Henry constant and differential enthalpy of adsorption at infinite dilution, and indicate hydrophobicity of the SiC-DC structure and its affinity for CO2 and CH4 adsorption. We also study the effect of molecular geometry, pore structure and energy heterogeneity considering different hopping scenarios for diffusion of CO2 and CH4 through ultramicropores using the Nudged Elastic Band (NEB) method. It is shown that the energy barrier of a hopping molecule is very sensitive to the shape of the pore entry. We provide evidence for the influence of structural heterogeneity on self-diffusivity of methane and carbon dioxide using molecular dynamics simulation, based on a maximum in the variation of self-diffusivity with loading. A comparison of the MD simulation results with self-diffusivities from quasi-elastic neutron scattering (QENS) measurements and, with macroscopic uptake-based low-density transport coefficients, reveals the existence of internal barriers not captured in MD simulation and QENS experiments. Nevertheless, the simulation and macroscopic uptake-based diffusion coefficients agree within a factor of 2-3, indicating that our HRMC model structure captures most of the important energy barriers affecting the transport of CH4 in the nanostructure of SiC-DC.

5.
Phys Chem Chem Phys ; 16(16): 7562-70, 2014 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-24634917

RESUMEN

The salicylideneaniline (SA) molecule, both in the solid phase and sorbed in silicalite-1 zeolite, was studied by a large palette of vibrational spectroscopic methods (INS, Raman, and infrared) and by computational techniques. The comparison of the experimental and calculated spectra unambiguously indicates that the molecule is present in the cis-enol form in both phases. The results of the study allowed the proposal of a complete assignment of the vibrational spectrum of the SA molecule. The analysis of peak positions in the Raman and INS spectra of the molecule in the solid and sorbed states, and of the corresponding vibrational modes, shows that the confinement by the zeolite mostly affects those modes whose vibrational amplitude is localized on atoms of the phenol ring. This finding suggests that the molecule sits in the zeolite void such that the phenol ring is affected by the sorption to a greater extent than the benzene one. This assumption is corroborated by results of molecular modeling that shows the most energetically preferred position of the molecule in the straight channel of the zeolite framework with the phenol ring lying between two channel intersections, whereas the benzene ring is situated in the intersection.

7.
Chemphyschem ; 14(9): 1783-6, 2013 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-23592413

RESUMEN

Flip and hop before you're caught! The proton dynamics of solid 12-tungstophosphoric acid (TPA) is probed by solid-state (2)H NMR in a temperature range from 293-503 K. Protons of TPA are shown to be involved in two types of molecular motion (see picture): the anisotropic local two-site flipping between the two possible orientations of the O-H bond at bridged oxygens of the Keggin anion, and the isotropic diffusion by hopping between neighboring surface oxygens of the anion.

8.
J Chem Phys ; 138(3): 034706, 2013 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-23343292

RESUMEN

The problem of simulating processes involving equilibria and dynamics of guest sorbates within zeolitic imidazolate frameworks (ZIF) by means of molecular dynamics (MD) computer experiments is of growing importance because of the promising role of ZIFs as molecular "traps" for clean energy applications. A key issue for validating such an atomistic modeling attempt is the possibility of comparing the MD results, with real experiments being able to capture analogous space and time scales to the ones pertained to the computer experiments. In the present study, this prerequisite is fulfilled through the quasi-elastic neutron scattering technique (QENS) for measuring self-diffusivity, by elaborating the incoherent scattering signal of hydrogen nuclei. QENS and MD experiments were performed in parallel to probe the hydrogen motion, for the first time in ZIF members. The predicted and measured dynamics behaviors show considerable concentration variation of the hydrogen self-diffusion coefficient in the two topologically different ZIF pore networks of this study, the ZIF-3 and ZIF-8. Modeling options such as the flexibility of the entire matrix versus a rigid framework version, the mobility of the imidazolate ligand, and the inclusion of quantum mechanical effects in the potential functions were examined in detail for the sorption thermodynamics and kinetics of hydrogen and also of deuterium, by employing MD combined with Widom averaging towards studying phase equilibria. The latter methodology ensures a rigorous and efficient way for post-processing the dynamics trajectory, thereby avoiding stochastic moves via Monte Carlo simulation, over the large number of configurational degrees of freedom a nonrigid framework encompasses.


Asunto(s)
Hidrógeno/química , Imidazoles/química , Simulación de Dinámica Molecular , Zeolitas/química , Cinética , Neutrones , Dispersión de Radiación
10.
Chemistry ; 17(32): 8882-9, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21714013

RESUMEN

Quasi-elastic neutron scattering (QENS) measurements combined with molecular dynamics (MD) simulations were conducted to deeply understand the concentration dependence of the self- and transport diffusivities of CH(4) and CO(2), respectively, in the humidity-resistant metal-organic framework UiO-66(Zr). The QENS measurements show that the self-diffusivity profile for CH(4) exhibits a maximum, while the transport diffusivity for CO(2) increases continuously at the loadings explored in this study. Our MD simulations can reproduce fairly well both the magnitude and the concentration dependence of each measured diffusivity. The flexibility of the framework implemented by deriving a new forcefield for UiO-66(Zr) has a significant impact on the diffusivity of the two species. Methane diffuses faster than CO(2) over a broad range of loading, and this is in contrast to zeolites with narrow windows, for which opposite trends were observed. Further analysis of the MD trajectories indicates that the global microscopic diffusion mechanism involves a combination of intracage motions and jump sequences between tetrahedral and octahedral cages.

11.
Chemphyschem ; 12(6): 1130-4, 2011 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-21438112

RESUMEN

The remarkable differences in the guest diffusivities in nanoporous materials commonly found with the application of different measuring techniques are usually ascribed to the existence of a hierarchy of transport resistances in addition to the diffusional resistance of the pore system and their differing influence due to the differing diffusion path lengths covered by the different measuring techniques. We report diffusion measurements with nanoporous glasses where the existence of such resistances could be avoided. Molecular propagation over diffusion path lengths from hundreds of nanometers up to millimeters was thus found to be controlled by a uniform mechanism, appearing in coinciding results of microscopic and macroscopic diffusion measurement.

12.
Chem Soc Rev ; 40(2): 550-62, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21180728

RESUMEN

Hybrid porous solids, with their tunable structures, their multifunctional properties and their numerous applications, are currently topical, particularly in the domain of adsorption and storage of greenhouse gases. Most of the data reported so far concern the performances of these solids in this domain, particularly in terms of adsorbed amounts of gas but do not explain at the atomic level why and how adsorption and storage occur. From a combination of structural, spectroscopic, thermodynamic experiments and of molecular simulations, this tutorial review proposes answers to these open questions with a special emphasis on CO(2) and CH(4) storage by some rigid and flexible hybrid porous materials.

15.
ACS Nano ; 4(1): 143-52, 2010 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-19957953

RESUMEN

Quasi-elastic neutron scattering measurements are combined with molecular dynamics simulations to determine the self-diffusivity, corrected diffusivity, and transport diffusivity of CO(2) in the metal-organic framework MIL-47(V) (MIL = Materials Institut Lavoisier) over a wide range of loading. The force field used for describing the host/guest interactions is first validated on the thermodynamics of the MIL-47(V)/CO(2) system, prior to being transferred to the investigations of the dynamics. A decreasing profile is then deduced for D(s) and D(o) whereas D(t) presents a non monotonous evolution with a slight decrease at low loading followed by a sharp increase at higher loading. Such decrease of D(t) which has never been evidenced in any microporous systems comes from the atypical evolution of the thermodynamic correction factor that reaches values below 1 at low loading. This implies that, due to intermolecular interactions, the CO(2) molecules in MIL-47(V) do not behave like an ideal gas. Further, molecular simulations enabled us to elucidate unambiguously a 3D diffusion mechanism within the pores of MIL-47(V).

16.
J Phys Chem B ; 113(38): 12635-8, 2009 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-19715351

RESUMEN

Neutron scattering measurements and molecular dynamics simulations have been carried out on the three isomers of pentane (neopentane (neo), isopentane (iso), and n-pentane (n-)) adsorbed in zeolite NaY. The results show that the self-diffusivity of these isomers follow the order Ds(neo)>Ds(iso)>Ds(n-), suggesting that the larger the cross section perpendicular to the molecular axis of the isomer, the higher the self-diffusivity. This counterintuitive result provides the first direct experimental evidence in support of the mutual cancellation of forces on the diffusant leading to a diffusivity maximum and is often referred to as the levitation effect. We also provide a direct confirmation of the experimental observations by Kemball (Adv. Catal. 1950, 2, 233) by calculating the entropy.

18.
Chemphyschem ; 10(14): 2429-33, 2009 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-19708047

RESUMEN

By applying pulsed-field gradient nuclear magnetic resonance (PFG NMR) in comparison to quasi-elastic neutron scattering (QENS), we sense by measurement of the diffusion of n-octane on different length scales, transport resistances in faujasite type X (which is isostructural with type Y and differs by the lower Si/Al ratio only) with mutual distances of less than 300 nm. Direct observation of the real structure of zeolite X by transmission electron microscopy identifies them as stacking faults of mirror-twin type on (111)-type planes of the cubic framework. Thus, direct experimental proof is given that, in general, nanoporous host systems such as zeolite crystals cannot be considered as a mere arrangement of cavities. It is rather the presence of structural defects that dominates their properties as soon as transport phenomena with practical relevance, including chemical conversion by heterogeneous catalysis and chemical separation by molecular sieving and selective adsorption, become relevant.

19.
Phys Chem Chem Phys ; 11(29): 6090-7, 2009 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-19606318

RESUMEN

The reduction of copper chromite, CuCr(2)O(4), is followed by means of thermogravimetric analysis. The reduced state is studied by means of FT IR spectroscopy, Raman spectroscopy and inelastic neutron scattering. The reduction of copper occurs in two stages: absorption of hydrogen at 250-400 degrees C and dehydration of the reduced state at above 450 degrees C. The measured vibrational spectra prove that a considerable amount of hydrogen is absorbed by the oxide structure with absorbed protons stabilized in OH and HOH-groups (geminal protons). Three groups of vibration bands are observed in the INS spectra, which can be assigned to stretching, bending and libration vibrations. An increase in the reduction temperature of copper chromite results in softening of the stretching and hardening of the bending vibrations, what can be related to the strengthening of hydrogen bonding.

20.
J Phys Chem B ; 113(42): 13776-81, 2009 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-19534490

RESUMEN

We have developed a new grand canonical molecular dynamics (GCMD) algorithm to study microwave (MW) heating effects on competitive mixture sorption and have applied the method to methanol and benzene in silicalite zeolite. The new algorithm combines MW-driven molecular dynamics with grand canonical Monte Carlo (GCMC), the latter modeling adsorption/desorption processes. We established the validity of the new algorithm by benchmarking single-component isotherms for methanol and benzene in silicalite against those obtained from standard GCMC, as well as against experimental data. We simulated single-component and mixture adsorption isobars for conventional and MW-heated systems. In the case of the single-component isobars, we found that for dipolar methanol, both the MW and conventional heated isobars show similar desorption behavior, displaying comparable loadings as a function of molecular temperature. In contrast, nonpolar benzene showed no desorption upon exposure to MWs, even for relatively high field strengths. In the case of methanol/benzene mixtures, the fact that benzene is transparent to the MW field allows the selective desorption of methanol, giving rise to loading ratios not reachable through conventional heating.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA