Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
2.
Nat Commun ; 15(1): 2691, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538574

RESUMEN

Chemotherapy and immune checkpoint inhibitors have a role in the post-neoadjuvant setting in patients with triple-negative breast cancer (TNBC). However, the effects of nivolumab, a checkpoint inhibitor, capecitabine, or the combination in changing peripheral immunoscore (PIS) remains unclear. This open-label randomized phase II OXEL study (NCT03487666) aimed to assess the immunologic effects of nivolumab, capecitabine, or the combination in terms of the change in PIS (primary endpoint). Secondary endpoints included the presence of ctDNA, toxicity, clinical outcomes at 2-years and association of ctDNA and PIS with clinical outcomes. Forty-five women with TNBC and residual invasive disease after standard neoadjuvant chemotherapy were randomized to nivolumab, capecitabine, or the combination. Here we show that a combination of nivolumab plus capecitabine leads to a greater increase in PIS from baseline to week 6 (91%) compared with nivolumab (47%) or capecitabine (53%) alone (log-rank p = 0.08), meeting the pre-specified primary endpoint. In addition, the presence of circulating tumor DNA (ctDNA) is associated with disease recurrence, with no new safety signals in the combination arm. Our results provide efficacy and safety data on this combination in TNBC and support further development of PIS and ctDNA analyses to identify patients at high risk of recurrence.


Asunto(s)
Nivolumab , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Capecitabina/efectos adversos , Nivolumab/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Recurrencia Local de Neoplasia/patología , Terapia Neoadyuvante , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos
3.
medRxiv ; 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38105958

RESUMEN

Chemotherapy and immune checkpoint inhibitors have a role in the post-neoadjuvant setting in patients with triple-negative breast cancer (TNBC). However, the effects of nivolumab, a checkpoint inhibitor, capecitabine, or the combination in changing peripheral immunoscore (PIS) remains unclear. This open-label randomized phase II OXEL study (NCT03487666) aimed to assess the immunologic effects of nivolumab, capecitabine, or the combination in terms of the change in PIS (primary endpoint). Secondary endpoints include the presence of ctDNA, toxicity, clinical outcomes at 2-years and association of ctDNA and PIS with clinical outcomes. Forty-five women with TNBC and residual invasive disease after standard neoadjuvant chemotherapy were randomized to nivolumab, capecitabine, or the combination. Here we show that a combination of nivolumab plus capecitabine leads to a greater increase in PIS from baseline to week 6 (91%) compared with nivolumab (47%) or capecitabine (53%) alone (log-rank p = 0.08), meeting the pre-specified primary endpoint. In addition, the presence of circulating tumor DNA (ctDNA) was associated with disease recurrence, with no new safety signals in the combination arm. Our results provide efficacy and safety data on this combination in TNBC and support further development of PIS and ctDNA analyses to identify patients at high risk of recurrence.

4.
Oncologist ; 28(4): 364-e217, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36640137

RESUMEN

BACKGROUND: NHS-IL12 is a first-in-class, recombinant fusion protein composed of the human monoclonal antibody NHS76 (binds exposed DNA/histones at sites of intratumoral necrosis) fused to 2 IL-12 heterodimers. The maximum tolerated dose (MTD) and recommended phase II dose (RP2D) of NHS-IL12 monotherapy given subcutaneously (SC) every 4 weeks was previously reported. The study was expanded to include a high-exposure cohort with NHS-IL12 SC every 2 weeks (q2w). METHODS: This single-arm, phase I trial evaluated NHS-IL12 12 µg/kg SC q2w or 16.8µg/kg SC q2w in patients with metastatic solid tumors. The primary endpoint was safety. RESULTS: Using a 3+3 design, 13 patients with advanced cancer were enrolled and 12 were dose-limiting toxicity (DLT) evaluable. There was 1 DLT (Grade 3 aspartate transaminase/alanine transaminase [AST/ALT] elevation). Other grade 3 toxicities included: flu-like symptoms 1/13 (8%), decreased absolute lymphocyte count (ALC) 1/13 (8%), decreased white blood cell count (WBC) 1/13 (8%), but most adverse events reported were low grade and self-limiting grade. Fifty percent of evaluable patients (6/12) experienced stable disease (SD) with 42% (5/12) developing progressive disease (PD) at the first restaging. CONCLUSION: Biweekly NHS-IL12 was well tolerated in this small phase I study. Additional studies incorporating NHS-IL12 with other immunomodulating agents are underway. (ClinicalTrials.gov Identifier: NCT01417546).


Asunto(s)
Neoplasias Primarias Secundarias , Neoplasias , Humanos , Medicina Estatal , Interleucina-12/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Proteínas Recombinantes de Fusión/uso terapéutico
5.
J Immunother Cancer ; 10(4)2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35418484

RESUMEN

PURPOSE: Bintrafusp alfa is a bifunctional agent consisting of an anti-human PD-L1 antibody linked to two TGFßRII. It is designed to act both as a checkpoint inhibitor and to 'trap' TGFß in the tumor microenvironment. Phase I and II clinical studies demonstrated clinical activity in patients with a range of human papillomavirus (HPV)-associated cancers. The purpose of the studies reported here was the interrogation of various aspects of the peripheral immunome in patients with HPV-associated cancers, both prior to and early in the treatment regimen of bintrafusp alfa to better understand the mode of action of the agent and to help define which patients are more likely to benefit from bintrafusp alfa treatment. PATIENTS AND METHODS: The peripheral immunome of patients (n=65) with HPV+ malignancies was analyzed both prior to treatment with bintrafusp alfa and day 14 post-treatment for levels and changes in (1) 158 different immune cell subsets, (2) multiple plasma soluble factors including analytes reflecting immune stimulatory and inhibitory status, (3) complete blood counts, and in a subset of patients (4) TCR diversity and (5) HPV-specific T-cell responses. RESULTS: Interrogation of the peripheral immunome prior to bintrafusp alfa treatment revealed several factors that associated with clinical response, including (1) higher levels of sCD27:sCD40L ratios, (2) lower levels of TGFß1 and 12 additional factors associated with tumor mesenchymalization, and (3) higher CD8+ T cell:MDSC ratios. Analysis at 2 weeks post bintrafusp alfa revealed that eventual clinical responders had fewer increases in IL-8 levels and the neutrophil to lymphocyte ratio, and higher levels of HPV-16 specific CD8+ T cells. This study also provided information concerning differences in the peripheral immunome for patients who were naïve versus refractory to prior checkpoint inhibition therapy. While preliminary, two multivariate models developed predicted clinical benefit with 76%-91% accuracy. CONCLUSIONS: These studies add insight into the mechanism of action of bintrafusp alfa and provide evidence that the interrogation of both cellular and soluble components of the peripheral immunome of patients with HPV-associated malignancies, either prior to or early in the therapeutic regimen, can provide information as to which patients are more likely to benefit with bintrafusp alfa therapy.


Asunto(s)
Alphapapillomavirus , Neoplasias , Infecciones por Papillomavirus , Linfocitos T CD8-positivos/patología , Humanos , Factores Inmunológicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Papillomaviridae , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/tratamiento farmacológico , Infecciones por Papillomavirus/patología , Microambiente Tumoral
6.
Oncologist ; 27(3): 198-209, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35274710

RESUMEN

BACKGROUND: FOLFOX plus bevacizumab is a standard of care (SOC) for first-line treatment of microsatellite-stable metastatic colorectal cancer (MSS mCRC). This study randomized patients to SOC or SOC plus avelumab (anti-PD-L1) plus CEA-targeted vaccine. METHODS: Patients with untreated MSS mCRC enrolled to a lead-in arm assessing safety of SOC + immuno-oncology agents (IO). Next, patients were randomized to SOC or SOC + IO. The primary endpoint was progression-free survival (PFS). Multiple immune parameters were analyzed. RESULTS: Six patients enrolled to safety lead-in, 10 randomized to SOC, and 10 to SOC + IO. There was no difference in median PFS comparing SOC versus SOC + IO (8.8 months (95% CI: 3.3-17.0 months) versus 10.1 months (95% CI: 3.6-16.1 months), respectively; hazard ratio 1.061 [P = .91; 95% CI: 0.380-2.966]). The objective response rate was 50% in both arms. Of patients analyzed, most (8/11) who received SOC + IO developed multifunctional CD4+/CD8+ T-cell responses to cascade antigens MUC1 and/or brachyury, compared to 1/8 who received SOC alone (P = .020). We detected post-treatment changes in immune parameters that were distinct to the SOC and SOC + IO treatment arms. Accrual closed after an unplanned analysis predicted a low likelihood of meeting the primary endpoint. CONCLUSIONS: SOC + IO generated multifunctional MUC1- and brachyury-specific CD4+/CD8+ T cells despite concurrent chemotherapy. Although a tumor-directed immune response is necessary for T-cell-mediated antitumor activity, it was not sufficient to improve PFS. Adding agents that increase the number and function of effector cells may be required for clinical benefit.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Colorrectales , Anticuerpos Monoclonales Humanizados/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Bevacizumab/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Humanos , Inmunoterapia , Vacunas/uso terapéutico
7.
J Immunother Cancer ; 9(9)2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34479925

RESUMEN

BACKGROUND: MVA-BN-brachyury-TRICOM is a recombinant vector-based therapeutic cancer vaccine designed to induce an immune response against brachyury. Brachyury, a transcription factor overexpressed in advanced cancers, has been associated with treatment resistance, epithelial-to-mesenchymal transition, and metastatic potential. MVA-BN-brachyury-TRICOM has demonstrated immunogenicity and safety in previous clinical trials of subcutaneously administered vaccine. Preclinical studies have suggested that intravenous administration of therapeutic vaccines can induce superior CD8+ T cell responses, higher levels of systemic cytokine release, and stronger natural killer cell activation and proliferation. This is the first-in-human study of the intravenous administration of MVA-BN-brachyury-TRICOM. METHODS: Between January 2020 and March 2021, 13 patients were treated on a phase 1, open-label, 3+3 design, dose-escalation study at the National Institutes of Health Clinical Center. The study population was adults with advanced solid tumors and was enriched for chordoma, a rare sarcoma of the notochord that overexpresses brachyury. Vaccine was administered intravenously at three DLs on days 1, 22, and 43. Blood samples were taken to assess drug pharmacokinetics and immune activation. Imaging was conducted at baseline, 1 month, and 3 months post-treatment. The primary endpoint was safety and tolerability as determined by the frequency of dose-limiting toxicities; a secondary endpoint was determination of the recommended phase 2 dose. RESULTS: No dose-limiting toxicities were observed and no serious adverse events were attributed to the vaccine. Vaccine-related toxicities were consistent with class profile (ie, influenza-like symptoms). Cytokine release syndrome up to grade 2 was observed with no adverse outcomes. Dose-effect trend was observed for fever, chills/rigor, and hypotension. Efficacy analysis of objective response rate per RECIST 1.1 at the end of study showed one patient with a partial response, four with stable disease, and eight with progressive disease. Three patients with stable disease experienced clinical benefit in the form of improvement in pain. Immune correlatives showed T cell activation against brachyury and other tumor-associated cascade antigens. CONCLUSIONS: Intravenous administration of MVA-BN-brachyury-TRICOM vaccine was safe and tolerable. Maximum tolerated dose was not reached. The maximum administered dose was 109 infectious units every 3 weeks for three doses. This dose was selected as the recommended phase 2 dose. TRIAL REGISTRATION NUMBER: NCT04134312.


Asunto(s)
Administración Intravenosa/métodos , Vacunas contra el Cáncer/uso terapéutico , Proteínas Fetales/uso terapéutico , Inmunoterapia/métodos , Neoplasias/tratamiento farmacológico , Proteínas de Dominio T Box/uso terapéutico , Vacunas contra el Cáncer/farmacología , Femenino , Proteínas Fetales/farmacología , Humanos , Masculino , Persona de Mediana Edad , Proteínas de Dominio T Box/farmacología , Vacunas Sintéticas/farmacología , Vacunas Sintéticas/uso terapéutico
8.
Artículo en Inglés | MEDLINE | ID: mdl-34262794

RESUMEN

Human papillomavirus (HPV)-associated malignancies cause almost all cases of cervical cancer in women, and a significant percentage of head and neck cancer, together totaling almost 5% of the global cancer burden, and representing an important public health issue. The approval and use of two prophylactic HPV vaccines, Gardasil® and Cervarix®, have significantly decreased infections with HPV, but unfortunately, prophylactic vaccination does not treat established infections or malignancies resulting from HPV. Therefore, therapies for HPV-associated malignancies are necessary to improve the quality of life and survival in patients with these diseases. This review will detail new combinations of therapies in clinical development for HPV-associated malignancies.

9.
NPJ Vaccines ; 6(1): 86, 2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34145272

RESUMEN

Activation of antigen-specific T-lymphocyte responses may be needed to cure disorders caused by chronic infection with low-risk human papillomavirus (lrHPV). Safe and effective adjuvant therapies for such disorders are needed. The safety and efficacy of a novel gorilla adenovirus vaccine expressing a protein designed to elicit immune responses directed against HPV6 and HPV11, PRGN-2012, was studied using in vitro stimulation of T lymphocytes from patients with recurrent respiratory papillomatosis, in vivo vaccination studies, and therapeutic studies in mice bearing tumors expressing lrHPV antigen. PRGN-2012 treatment induces lrHPV antigen-specific responses in patient T lymphocytes. Vaccination of wild-type mice induces E6-specific T-lymphocyte responses without toxicity. In vivo therapeutic vaccination of mice bearing established HPV6 E6 expressing tumors results in HPV6 E6-specific CD8+ T-lymphocyte immunity of sufficient magnitude to induce tumor growth delay. The clinical study of PRGN-2012 in patients with disorders caused by chronic infection with lrHPV is warranted.

10.
J Immunother Cancer ; 9(3)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33762322

RESUMEN

BACKGROUND: Antitumor vaccines targeting tumor-associated antigens (TAAs) can generate antitumor immune response. A novel vaccine platform using adenovirus 5 (Ad5) vectors [E1-, E2b-] targeting three TAAs-prostate-specific antigen (PSA), brachyury, and MUC-1-has been developed. Both brachyury and the C-terminus of MUC-1 are overexpressed in metastatic castration-resistant prostate cancer (mCRPC) and have been shown to play an important role in resistance to chemotherapy, epithelial-mesenchymal transition, and metastasis. The transgenes for PSA, brachyury, and MUC-1 all contain epitope modifications for the expression of CD8+ T-cell enhancer agonist epitopes. We report here the first-in-human trial of this vaccine platform. METHODS: Patients with mCRPC were given concurrently three vaccines targeting PSA, brachyury, and MUC-1 at 5×1011 viral particles (VP) each, subcutaneously every 3 weeks for a maximum of three doses (dose de-escalation cohort), followed by a booster vaccine every 8 weeks for 1 year (dose-expansion cohort only). The primary objective was to determine the safety and the recommended phase II dose. Immune assays and clinical responses were evaluated. RESULTS: Eighteen patients with mCRPC were enrolled between July 2018 and September 2019 and received at least one vaccination. Median PSA was 25.58 ng/mL (range, 0.65-1006 ng/mL). The vaccine was tolerable and safe, and no grade >3 treatment-related adverse events or dose-limiting toxicities (DLTs) were observed. One patient had a partial response, while five patients had confirmed PSA decline and five had stable disease for >6 months. Median progression-free survival was 22 weeks (95% CI: 19.1 to 34). Seventeen (100%) of 17 patients mounted T-cell responses to at least one TAA, whereras 8 (47%) of 17 patients mounted immune responses to all three TAAs. Multifunctional T-cell responses to PSA, MUC-1, and brachyury were also detected after vaccination in the majority of the patients. CONCLUSIONS: Ad5 PSA/MUC-1/brachyury vaccine is well tolerated. The primary end points were met and there were no DLTs. The recommended phase II dose is 5×1011 VP. The vaccine demonstrated clinical activity, including one partial response and confirmed PSA responses in five patients. Three patients with prolonged PSA responses received palliative radiation therapy. Further research is needed to evaluate the clinical benefit and immunogenicity of this vaccine in combination with other immuno-oncology agents and/or palliative radiation therapy. TRIAL REGISTRATION NUMBER: NCT03481816.


Asunto(s)
Adenoviridae/inmunología , Vacunas contra el Cáncer/uso terapéutico , Proteínas Fetales/inmunología , Calicreínas/inmunología , Mucina-1/inmunología , Antígeno Prostático Específico/inmunología , Neoplasias de la Próstata Resistentes a la Castración/terapia , Proteínas de Dominio T Box/inmunología , Vacunas Combinadas/uso terapéutico , Adenoviridae/genética , Anciano , Anciano de 80 o más Años , Vacunas contra el Cáncer/efectos adversos , Vacunas contra el Cáncer/genética , Vacunas contra el Cáncer/inmunología , Proteínas Fetales/genética , Vectores Genéticos , Humanos , Calicreínas/genética , Masculino , Persona de Mediana Edad , Mucina-1/genética , Supervivencia sin Progresión , Antígeno Prostático Específico/genética , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/inmunología , Proteínas de Dominio T Box/genética , Factores de Tiempo , Vacunación , Eficacia de las Vacunas , Vacunas Combinadas/efectos adversos , Vacunas Combinadas/genética , Vacunas Combinadas/inmunología , Vacunas Virales
11.
JCI Insight ; 6(7)2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33651712

RESUMEN

There are approximately 44,000 cases of human papillomavirus-associated (HPV-associated) cancer each year in the United States, most commonly caused by HPV types 16 and 18. Prophylactic vaccines successfully prevent healthy people from acquiring HPV infections via HPV-specific antibodies. In order to treat established HPV-associated malignancies, however, new therapies are necessary. Multiple recombinant gorilla adenovirus HPV vaccine constructs were evaluated in NSG-ß2m-/- peripheral blood mononuclear cell-humanized mice bearing SiHa, a human HPV16+ cervical tumor, and/or in the syngeneic HPV16+ TC-1 model. PRGN-2009 is a therapeutic gorilla adenovirus HPV vaccine containing multiple cytotoxic T cell epitopes of the viral oncoproteins HPV 16/18 E6 and E7, including T cell enhancer agonist epitopes. PRGN-2009 treatment reduced tumor volume and increased CD8+ and CD4+ T cells in the tumor microenvironment of humanized mice bearing the human cervical tumor SiHa. PRGN-2009 monotherapy in the syngeneic TC-1 model also reduced tumor volumes and weights, generated high levels of HPV16 E6-specific T cells, and increased multifunctional CD8+ and CD4+ T cells in the tumor microenvironment. These studies provide the first evaluation to our knowledge of a therapeutic gorilla adenovirus HPV vaccine, PRGN-2009, showing promising preclinical antitumor efficacy and induction of HPV-specific T cells, along with the rationale for its evaluation in clinical trials.


Asunto(s)
Adenovirus de los Simios/genética , Vacunas contra el Cáncer/farmacología , Vacunas contra Papillomavirus/farmacología , Neoplasias del Cuello Uterino/tratamiento farmacológico , Vacunas Sintéticas/farmacología , Animales , Linfocitos T CD8-positivos , Vacunas contra el Cáncer/genética , Línea Celular Tumoral , Epítopos , Femenino , Papillomavirus Humano 16/inmunología , Humanos , Ratones Endogámicos C57BL , Neutrófilos , Proteínas Oncogénicas Virales/inmunología , Vacunas contra Papillomavirus/genética , Proteínas Represoras/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Microambiente Tumoral/efectos de los fármacos , Neoplasias del Cuello Uterino/inmunología , Neoplasias del Cuello Uterino/virología , Vacunas Sintéticas/genética , Ensayos Antitumor por Modelo de Xenoinjerto
12.
J Immunother Cancer ; 8(2)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33323462

RESUMEN

BACKGROUND: Bintrafusp alfa is a first-in-class bifunctional fusion protein composed of the extracellular domain of transforming growth factor (TGF)-ßRII (a TGF-ß 'trap') fused to a human IgG1 mAb blocking programmed cell death ligand 1. This is the largest analysis of patients with advanced, pretreated human papillomavirus (HPV)-associated malignancies treated with bintrafusp alfa. METHODS: In these phase 1 (NCT02517398) and phase 2 trials (NCT03427411), 59 patients with advanced, pretreated, checkpoint inhibitor-naive HPV-associated cancers received bintrafusp alfa intravenously every 2 weeks until progressive disease, unacceptable toxicity, or withdrawal. Primary endpoint was best overall response per Response Evaluation Criteria in Solid Tumors (RECIST) V.1.1; other endpoints included safety. RESULTS: As of April 17, 2019 (phase 1), and October 4, 2019 (phase 2), the confirmed objective response rate per RECIST V.1.1 in the checkpoint inhibitor-naive, full-analysis population was 30.5% (95% CI, 19.2% to 43.9%; five complete responses); eight patients had stable disease (disease control rate, 44.1% (95% CI, 31.2% to 57.6%)). In addition, three patients experienced a delayed partial response after initial disease progression, for a total clinical response rate of 35.6% (95% CI, 23.6% to 49.1%). An additional patient with vulvar cancer had an unconfirmed response. Forty-nine patients (83.1%) experienced treatment-related adverse events, which were grade 3/4 in 16 patients (27.1%). No treatment-related deaths occurred. CONCLUSION: Bintrafusp alfa showed clinical activity and manageable safety and is a promising treatment in HPV-associated cancers. These findings support further investigation of bintrafusp alfa in patients with advanced, pretreated HPV-associated cancers.


Asunto(s)
Antígeno B7-H1/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Papillomaviridae/efectos de los fármacos , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/tratamiento farmacológico , Factor de Crecimiento Transformador beta/efectos de los fármacos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias/virología , Infecciones por Papillomavirus/patología
13.
Immunotargets Ther ; 9: 167-200, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33117742

RESUMEN

Human papillomavirus (HPV)-related malignancies are responsible for almost all cases of cervical cancer in women, and over 50% of all cases of head and neck carcinoma. Worldwide, HPV-positive malignancies account for 4.5% of the global cancer burden, or over 600,000 cases per year. HPV infection is a pressing public health issue, as more than 80% of all individuals have been exposed to HPV by age 50, representing an important target for vaccine development to reduce the incidence of cancer and the economic cost of HPV-related health issues. The approval of Gardasil® as a prophylactic vaccine for high-risk HPV 16 and 18 and low-risk HPV6 and 11 for people aged 11-26 in 2006, and of Cervarix® in 2009, revolutionized the field and has since reduced HPV infection in young populations. Unfortunately, prophylactic vaccination does not induce immunity in those with established HPV infections or HPV-induced neoplasms, and there are currently no therapeutic HPV vaccines approved by the US Food and Drug Administration. This comprehensive review will detail the progress made in the development of therapeutic vaccines against high-risk HPV types, and potential combinations with other immunotherapeutic agents for more efficient and rational designs of combination treatments for HPV-associated malignancies.

14.
J Immunother Cancer ; 8(1)2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32554612

RESUMEN

BACKGROUND: While prophylactic human papillomavirus (HPV) vaccines will certainly reduce the incidence of HPV-associated cancers, these malignancies remain a major health issue. PDS0101 is a liposomal-based HPV therapeutic vaccine consisting of the immune activating cationic lipid R-DOTAP and HLA-unrestricted HPV16 peptides that has shown in vivo CD8+ T cell induction and safety in a phase I study. In this report, we have employed the PDS0101 vaccine with two immune modulators previously characterized in preclinical studies and which are currently in phase II clinical trials. Bintrafusp alfa (M7824) is a first-in-class bifunctional fusion protein composed of the extracellular domains of the transforming growth factor-ß receptor type II (TGFßRII) fused to a human IgG1 monoclonal antibody blocking programmed cell death protein-1 ligand (PDL1), designed both as a checkpoint inhibitor and to bring the TGFßRII 'trap' to the tumor microenvironment (TME). NHS-interleukin-12 (NHS-IL12) is a tumor targeting immunocytokine designed to bring IL-12 to the TME and thus enhance the inflammatory Th1 response. METHODS: We employed TC-1 carcinoma (expressing HPV16 E6 and E7 and devoid of PDL1 expression) in a syngeneic mouse model in monotherapy and combination therapy studies to analyze antitumor effects and changes in immune cell types in the spleen and the TME. RESULTS: As a monotherapy, the PDS0101 vaccine generated HPV-specific T cells and antitumor activity in mice bearing HPV-expressing mEER oropharyngeal and TC-1 lung carcinomas. When used as a monotherapy in the TC-1 model, NHS-IL12 elicited antitumor effects as well as an increase in CD8+ T cells in the TME. When used as a monotherapy, bintrafusp alfa did not elicit antitumor effects or any increase in T cells in the TME. When all three agents were used in combination, maximum antitumor effects were observed, which correlated with increases in T cells and T-cell clonality in the TME. CONCLUSION: These studies provide the rationale for the potential clinical use of combinations of agents that can (1) induce tumor-associated T-cell responses, (2) potentiate immune responses in the TME and (3) reduce immunosuppressive entities in the TME.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Carcinoma/terapia , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Infecciones por Papillomavirus/terapia , Vacunas contra Papillomavirus/inmunología , Animales , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer/administración & dosificación , Carcinoma/inmunología , Carcinoma/patología , Carcinoma/virología , Línea Celular Tumoral/trasplante , Modelos Animales de Enfermedad , Femenino , Papillomavirus Humano 16/inmunología , Humanos , Inmunoconjugados/administración & dosificación , Inmunogenicidad Vacunal , Inmunoglobulina G/administración & dosificación , Inmunoterapia Activa/métodos , Interleucina-12/administración & dosificación , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Ratones , Proteínas Oncogénicas Virales/inmunología , Proteínas E7 de Papillomavirus/inmunología , Infecciones por Papillomavirus/inmunología , Infecciones por Papillomavirus/patología , Infecciones por Papillomavirus/virología , Vacunas contra Papillomavirus/administración & dosificación , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Represoras/inmunología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología
15.
Front Oncol ; 10: 549, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32373533

RESUMEN

The lack of serial biopsies in patients with a range of carcinomas has been one obstacle in our understanding of the mechanism of action of immuno-oncology agents as well as the elucidation of mechanisms of resistance to these novel therapeutics. While much information can be obtained from studies conducted with syngeneic mouse models, these models have limitations, including that both tumor and immune cells being targeted are murine and that many of the immuno-oncology agents being evaluated are human proteins, and thus multiple administrations are hampered by host xenogeneic responses. Some of these limitations are being overcome by the use of humanized mouse models where human peripheral blood mononuclear cells (PBMC) are engrafted into immunosuppressed mouse strains. Bintrafusp alfa (M7824) is an innovative first-in-class bifunctional fusion protein composed of the extracellular domain of the TGF-ßRII to function as a TGF-ß "trap" fused to a human IgG1 antibody blocking PD-L1. A phase I clinical trial of bintrafusp alfa showed promising anti-tumor efficacy in heavily pretreated advanced solid tumors, and multiple clinical studies are currently ongoing. There is still much to learn regarding the mechanism of action of bintrafusp alfa, including its effects on both human immune cells in the periphery and in the tumor microenvironment (TME), and any temporal effects upon multiple administrations. By using the NSG-ß2m-/- mouse strain humanized with PBMC, we demonstrate here for the first time: (a) the effects of bintrafusp alfa administration on human immune cells in the periphery vs. the TME using three different human xenograft models; (b) temporal effects upon multiple administrations of bintrafusp alfa; (c) phenotypic changes induced in the TME, and (d) variations observed in the use of multiple different PBMC donors. Also discussed are the similarities and differences in the data thus far obtained employing murine syngeneic models, from clinical trials, and in the use of this humanized mouse model. The results described here may guide the future use of this agent or similar immunotherapy agents as monotherapies or in combination therapy studies.

16.
J Immunother Cancer ; 8(1)2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32079617

RESUMEN

Immunosuppressive entities in the tumor microenvironment (TME) remain a major impediment to immunotherapeutic approaches for a majority of patients with cancer. While the immunosuppressive role of transforming growth factor-ß (TGF-ß) in the TME is well known, clinical studies to date with anti-TGF-ß agents have led to limited success. The bifunctional agent bintrafusp alfa (previously designated M7824) has been developed in an attempt to address this issue. Bintrafusp alfa consists of an IgG1 targeting programmed death ligand 1 (PD-L1) moiety fused via peptide linkers to the extracellular domain of two TGF-ß receptor II molecules designed to 'trap' TGF-ß in the TME. This agent is able to bring the TGF-ß trap to the TME via its anti-PD-L1 component, thus simultaneously attacking both the immunosuppressive PD-L1 and TGF-ß entities. A number of preclinical studies have shown bintrafusp alfa capable of (1) preventing or reverting TGF-ß-induced epithelial-mesenchymal transition in human carcinoma cells; this alteration in tumor cell plasticity was shown to render human tumor cells more susceptible to immune-mediated attack as well as to several chemotherapeutic agents; (2) altering the phenotype of natural killer and T cells, thus enhancing their cytolytic ability against tumor cells; (3) mediating enhanced lysis of human tumor cells via the antibody-dependent cell-mediated cytotoxicity mechanism; (4) reducing the suppressive activity of Treg cells; (5) mediating antitumor activity in numerous preclinical models and (6) enhancing antitumor activity in combination with radiation, chemotherapy and several other immunotherapeutic agents. A phase I clinical trial demonstrated a safety profile similar to other programmed cell death protein 1 (PD-1)/PD-L1 checkpoint inhibitors, with objective and durable clinical responses. We summarize here preclinical and emerging clinical data in the use of this bispecific and potentially multifunctional agent.


Asunto(s)
Antígeno B7-H1/metabolismo , Inmunoterapia/métodos , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Humanos , Ratones
17.
Front Oncol ; 10: 581801, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33747894

RESUMEN

Breast tumors commonly harbor low mutational burden, low PD-L1 expression, defective antigen processing/presentation, and an immunosuppressive tumor microenvironment (TME). In a malignancy mostly refractory to checkpoint blockade, there is an unmet clinical need for novel combination approaches that increase tumor immune infiltration and tumor control. Preclinical data have guided the development of this clinical trial combining 1) BN-Brachyury (a poxvirus vaccine platform encoding the tumor associated antigen brachyury), 2) bintrafusp alfa (a bifunctional protein composed of the extracellular domain of the TGF-ßRII receptor (TGFß "trap") fused to a human IgG1 anti-PD-L1), 3), entinostat (a class I histone deacetylase inhibitor), and 4) T-DM1 (ado-trastuzumab emtansine, a standard of care antibody-drug conjugate targeting HER2). We hypothesize that this tetratherapy will induce a robust immune response against HER2+ breast cancer with improved response rates through 1) expanding tumor antigen-specific effector T cells, natural killer cells, and immunostimulatory dendritic cells, 2) improving antigen presentation, and 3) decreasing inhibitory cytokines, regulatory T cells, and myeloid-derived suppressor cells. In an orthotopic HER2+ murine breast cancer model, tetratherapy induced high levels of antigen-specific T cell responses, tumor CD8+ T cell/Treg ratio, and augmented the presence of IFNγ- or TNFα-producing CD8+ T cells and IFNγ/TNFα bifunctional CD8+ T cells with increased cytokine production. Similar effects were observed in tumor CD4+ effector T cells. Based on this data, a phase 1b clinical trial evaluating the stepwise addition of BN-Brachyury, bintrafusp alfa, T-DM1 and entinostat in advanced breast cancer was designed. Arm 1 (TNBC) receives BN-Brachyury + bintrafusp alfa. Arm 2 (HER2+) receives T-DM1 + BN-Brachyury + bintrafusp alfa. After safety is established in Arm 2, Arm 3 (HER2+) will receive T-DM1 + BN-Brachyury + bintrafusp alfa + entinostat. Reimaging will occur every 2 cycles (1 cycle = 21 days). Arms 2 and 3 undergo research biopsies at baseline and after 2 cycles to evaluate changes within the TME. Peripheral immune responses will be evaluated. Co-primary objectives are response rate and safety. All arms employ a safety assessment in the initial six patients and a 2-stage Simon design for clinical efficacy (Arm 1 if ≥ three responses of eight then expand to 13 patients; Arms 2 and 3 if ≥ four responses of 14 then expand to 19 patients per arm). Secondary objectives include progression-free survival and changes in tumor infiltrating lymphocytes. Exploratory analyses include changes in peripheral immune cells and cytokines. To our knowledge, the combination of a vaccine, an anti-PD-L1 antibody, entinostat, and T-DM1 has not been previously evaluated in the preclinical or clinical setting. This trial (NCT04296942) is open at the National Cancer Institute (Bethesda, MD).

18.
Oncoimmunology ; 8(2): e1532764, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30713787

RESUMEN

Here we describe a novel bifunctional fusion protein, designated N-809. This molecule comprises the IL-15/IL15Rα superagonist complex containing the Fc-domain of IgG1 (N-803, formerly designated as ALT-803) fused to two single chain anti-PD-L1 domains. The fully human IgG1 portion of the N-809 molecule was designed to potentially mediate antibody dependent cellular cytotoxicity (ADCC). The studies reported here show that N-809 has the same ability to bind PD-L1 as an anti-PD-L1 monoclonal antibody. RNAseq studies show the ability of N-809 to alter the expression of an array of genes of both CD4+ and CD8+ human T cells, and to enhance their proliferation; CD8+ T cells exposed to N-809 also have enhanced ability to lyse human tumor cells. An array of genes was differentially expressed in human natural killer (NK) cells following N-809 treatment, and there was increased expression of several surface activating receptors; there was, however, no increase in the expression of inhibitory receptors known to be upregulated in exhausted NK cells. N-809 also increased the cytotoxic potential of NK cells, as shown by increased expression of granzyme B and perforin. The lysis of several tumor cell types was increased when either NK cells or tumor cells were exposed to N-809. Similarly, the highest level of ADCC was seen when both NK cells (from donors or cancer patients) and tumor cells were exposed to N-809. These studies thus demonstrate the multi-functionality of this novel agent.

19.
Clin Cancer Res ; 25(1): 99-109, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30131389

RESUMEN

PURPOSE: The NHS-IL12 immunocytokine is composed of two IL12 heterodimers fused to the NHS76 antibody. Preclinical studies have shown that this antibody targets IL12 to regions of tumor necrosis by binding histones on free DNA fragments in these areas, resulting in enhanced antitumor activity. The objectives of this phase I study were to determine the maximum tolerated dose (MTD) and pharmacokinetics of NHS-IL12 in subjects with advanced solid tumors. PATIENTS AND METHODS: Subjects (n = 59) were treated subcutaneously with NHS-IL12 in a single ascending-dose cohort followed by a multiple ascending-dose cohort (n = 37 with every 4-week dosing). RESULTS: The most frequently observed treatment-related adverse events (TRAE) included decreased circulating lymphocytes, increased liver transaminases, and flu-like symptoms. Of the grade ≥3 TRAEs, all were transient and only one was symptomatic (hyperhidrosis). The MTD is 16.8 µg/kg. A time-dependent rise in IFNγ and an associated rise in IL10 were observed following NHS-IL12. Of peripheral immune cell subsets evaluated, most noticeable were increases in frequencies of activated and mature natural killer (NK) cells and NKT cells. Based on T-cell receptor sequencing analysis, increases in T-cell receptor diversity and tumor-infiltrating lymphocyte density were observed after treatment where both biopsies and peripheral blood mononuclear cells were available. Although no objective tumor responses were observed, 5 subjects had durable stable disease (range, 6-30+ months). CONCLUSIONS: NHS-IL12 was well tolerated up to a dose of 16.8 µg/kg, which is the recommended phase II dose. Early clinical immune-related activity warrants further studies, including combination with immune checkpoint inhibitors.See related commentary by Lyerly et al., p. 9.


Asunto(s)
Inmunoglobulina G/administración & dosificación , Interleucina-12/inmunología , Neoplasias Primarias Secundarias/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Proteínas Recombinantes de Fusión/administración & dosificación , Adulto , Anciano , Línea Celular Tumoral , Fragmentación del ADN/efectos de los fármacos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/inmunología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/patología , Femenino , Humanos , Inmunoglobulina G/efectos adversos , Gripe Humana/inducido químicamente , Gripe Humana/patología , Interleucina-12/administración & dosificación , Interleucina-12/efectos adversos , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Masculino , Dosis Máxima Tolerada , Persona de Mediana Edad , Células T Asesinas Naturales/efectos de los fármacos , Células T Asesinas Naturales/inmunología , Neoplasias/inmunología , Neoplasias/patología , Neoplasias Primarias Secundarias/inmunología , Neoplasias Primarias Secundarias/patología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Proteínas Recombinantes de Fusión/efectos adversos , Transaminasas/metabolismo
20.
Oncoimmunology ; 7(11): e1466018, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30377559

RESUMEN

Checkpoint inhibitors targeting the PD-1/PD-L1 axis are promising immunotherapies shown to elicit objective responses against multiple tumor types, yet these agents fail to benefit most patients with carcinomas. This highlights the need to develop effective therapeutic strategies to increase responses to PD-1/PD-L1 blockade. Histone deacetylase (HDAC) inhibitors in combination with immunotherapies have provided preliminary evidence of anti-tumor effects. We investigated here whether exposure of either natural killer (NK) cells and/or tumor cells to two different classes of HDAC inhibitors would augment (a) NK cell‒mediated direct tumor cell killing and/or (b) antibody-dependent cellular cytotoxicity (ADCC) using avelumab, a fully human IgG1 monoclonal antibody targeting PD-L1. Treatment of a diverse array of human carcinoma cells with a clinically relevant dose of either the pan-HDAC inhibitor vorinostat or the class I HDAC inhibitor entinostat significantly enhanced the expression of multiple NK ligands and death receptors resulting in enhanced NK cell‒mediated lysis. Moreover, HDAC inhibition enhanced tumor cell PD-L1 expression both in vitro and in carcinoma xenografts. These data demonstrate that treatment of a diverse array of carcinoma cells with two different classes of HDAC inhibitors results in enhanced NK cell tumor cell lysis and avelumab-mediated ADCC. Furthermore, entinostat treatment of NK cells from healthy donors and PBMCs from cancer patients induced an activated NK cell phenotype, and heightened direct and ADCC-mediated healthy donor NK lysis of multiple carcinoma types. This study thus extends the mechanism and provides a rationale for combining HDAC inhibitors with PD-1/PD-L1 checkpoint blockade to increase patient responses to anti-PD-1/PD-L1 therapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...