Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ISME J ; 16(4): 1095-1109, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34857933

RESUMEN

A key challenge in microbiome research is to predict the functionality of microbial communities based on community membership and (meta)-genomic data. As central microbiota functions are determined by bacterial community networks, it is important to gain insight into the principles that govern bacteria-bacteria interactions. Here, we focused on the growth and metabolic interactions of the Oligo-Mouse-Microbiota (OMM12) synthetic bacterial community, which is increasingly used as a model system in gut microbiome research. Using a bottom-up approach, we uncovered the directionality of strain-strain interactions in mono- and pairwise co-culture experiments as well as in community batch culture. Metabolic network reconstruction in combination with metabolomics analysis of bacterial culture supernatants provided insights into the metabolic potential and activity of the individual community members. Thereby, we could show that the OMM12 interaction network is shaped by both exploitative and interference competition in vitro in nutrient-rich culture media and demonstrate how community structure can be shifted by changing the nutritional environment. In particular, Enterococcus faecalis KB1 was identified as an important driver of community composition by affecting the abundance of several other consortium members in vitro. As a result, this study gives fundamental insight into key drivers and mechanistic basis of the OMM12 interaction network in vitro, which serves as a knowledge base for future mechanistic in vivo studies.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Bacterias/genética , Bacterias/metabolismo , Redes y Vías Metabólicas , Ratones , Nutrientes
2.
Cell Host Microbe ; 29(11): 1680-1692.e7, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34610296

RESUMEN

The composition of intrinsic microbial communities determines if invading pathogens will find a suitable niche for colonization and cause infection or be eliminated. Here, we investigate how commensal E. coli mediate colonization resistance (CR) against Salmonella Typhimurium (S. Tm). Using synthetic bacterial communities, we show that the capacity of E. coli Mt1B1 to block S. Tm colonization depends on the microbial context. In an infection-permissive context, E. coli utilized a high diversity of carbon sources and was unable to block S. Tm invasion. In mice that were stably colonized by twelve phylogenetically diverse murine gut bacteria (OMM12), establishing a protective context, E. coli depleted galactitol, a substrate otherwise fueling S. Tm colonization. Here, Lachnospiraceae, capable of consuming C5 and C6 sugars, critically contributed to CR. We propose that E. coli provides CR by depleting a limited carbon source when in a microbial community adept at removing simple sugars from the intestine.


Asunto(s)
Microbiota , Salmonella typhimurium , Animales , Carbono , Escherichia coli , Galactitol , Ratones , Salmonella typhimurium/genética
3.
Gut Microbes ; 13(1): 1-20, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33550886

RESUMEN

Gut microbiota and the immune system are in constant exchange shaping both host immunity and microbial communities. Here, improper immune regulation can cause inflammatory bowel disease (IBD) and colitis. Antibody therapies blocking signaling through the CD40-CD40L axis showed promising results as these molecules are deregulated in certain IBD patients. To better understand the mechanism, we used transgenic DC-LMP1/CD40 animals with a constitutive CD40-signal in CD11c+ cells, causing a lack of intestinal CD103+ dendritic cells (DCs) and failure to induce regulatory T (iTreg) cells. These mice rapidly develop spontaneous fatal colitis, accompanied by dysbiosis and increased inflammatory IL-17+IFN-γ+ Th17/Th1 and IFN-γ + Th1 cells. In the present study, we analyzed the impact of the microbiota on disease development and detected elevated IgA- and IgG-levels in sera from DC-LMP1/CD40 animals. Their serum antibodies specifically bound intestinal bacteria, and by proteome analysis, we identified a 60 kDa chaperonin GroEL (Hsp60) from Helicobacter hepaticus (Hh) as the main specific antigen targeted in the absence of iTregs. When re-derived to a different Hh-free specific-pathogen-free (SPF) microbiota, mice showed few signs of disease, normal microbiota, and no fatality. Upon recolonization of mice with Hh, the disease developed rapidly. Thus, the present work identifies GroEL/Hsp60 as a major Hh-antigen and its role in disease onset, progression, and outcome in this colitis model. Our results highlight the importance of CD103+ DC- and iTreg-mediated immune tolerance to specific pathobionts to maintain healthy intestinal balance.


Asunto(s)
Chaperonina 60/inmunología , Colitis/microbiología , Helicobacter hepaticus/patogenicidad , Animales , Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/inmunología , Antígenos CD/inmunología , Linfocitos T CD4-Positivos/inmunología , Diferenciación Celular , Colitis/inmunología , Células Dendríticas/inmunología , Helicobacter hepaticus/inmunología , Cadenas alfa de Integrinas/inmunología , Intestinos/inmunología , Intestinos/microbiología , Ratones , Ratones Transgénicos , Organismos Libres de Patógenos Específicos , Linfocitos T Reguladores/inmunología
4.
Cancers (Basel) ; 12(12)2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33317136

RESUMEN

The role of gut microbiota in colorectal cancer is subject to extensive research. Before usage of biorepositories for microbiome studies, it is crucial to evaluate technical feasibility of microbiome profiling from various biospecimens. The aim of this study was to assess the feasibility of DNA-extraction and microbiome profiling of samples from different sample sites, tissue sites and storage duration of a colorectal cancer biobank. Mucosa samples, mucosal scrapings and feces as well as different tissue sites (tumor, normal mucosa) were analyzed. 16S rRNA gene-based microbiome profiling with taxonomic assignment was performed on the Illumina MiSeq (Illumina, San Diego, USA) platform from stored snap frozen samples. For statistical analysis, α- and ß-diversity measures, PCoA, permutational multivariate analysis of variance and graphical representation were performed. Microbiome analysis could be successfully performed in most of the samples (overall 93.3%) with sufficient numbers of high-quality reads. There were no differences between sample sites, while in some measures significant differences were found between tumor and normal mucosa (α-diversity, Shannon/Simpson Indices p = 0.028/0.027, respectively). Samples stored for up to eight years were used and storage conditions had no significant influence on the results. Tumor and tissue samples of a biobank stored long term can be successfully used for microbiome analysis. As large sample sizes are needed for association studies to evaluate microbial impact on tumorigenesis or progression of colorectal cancer, an already established biorepository may be a useful alternative to prospective clinical studies.

5.
Front Microbiol ; 11: 1710, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849360

RESUMEN

The naturally occurring nitrogen (N) isotopes, 15N and 14N, exhibit different reaction rates during many microbial N transformation processes, which results in N isotope fractionation. Such isotope effects are critical parameters for interpreting natural stable isotope abundances as proxies for biological process rates in the environment across scales. The kinetic isotope effect of ammonia oxidation (AO) to nitrite (NO2 -), performed by ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB), is generally ascribed to the enzyme ammonia monooxygenase (AMO), which catalyzes the first step in this process. However, the kinetic isotope effect of AMO, or ε A M O , has been typically determined based on isotope kinetics during product formation (cumulative product, NO2 -) alone, which may have overestimated ε A M O due to possible accumulation of chemical intermediates and alternative sinks of ammonia/ammonium (NH3/NH4 +). Here, we analyzed 15N isotope fractionation during archaeal ammonia oxidation based on both isotopic changes in residual substrate (RS, NH4 +) and cumulative product (CP, NO2 -) pools in pure cultures of the soil strain Nitrososphaera viennensis EN76 and in highly enriched cultures of the marine strain Nitrosopumilus adriaticus NF5, under non-limiting substrate conditions. We obtained ε A M O values of 31.9-33.1‰ for both strains based on RS (δ15NH4 +) and showed that estimates based on CP (δ15NO2 -) give larger isotope fractionation factors by 6-8‰. Complementary analyses showed that, at the end of the growth period, microbial biomass was 15N-enriched (10.1‰), whereas nitrous oxide (N2O) was highly 15N depleted (-38.1‰) relative to the initial substrate. Although we did not determine the isotope effect of NH4 + assimilation (biomass formation) and N2O production by AOA, our results nevertheless show that the discrepancy between ε A M O estimates based on RS and CP might have derived from the incorporation of 15N-enriched residual NH4 + after AMO reaction into microbial biomass and that N2O production did not affect isotope fractionation estimates significantly.

6.
Trends Microbiol ; 28(10): 789-792, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32376073

RESUMEN

An increasing number of microorganisms are classified as 'pathobionts' (i.e., organisms that can cause harm under certain circumstances) but there exist no universally used criteria for this definition. In particular, the term is often used for categorizing disease-associated taxa without proof of 'causality'. This creates confusion and distracts from explicitly searching for beneficial functions of these organisms that they may in fact have. Here, we discuss why this term in its current use, and its apparent simplicity, may obscure the complexity of microbe-host and microbe-microbe interactions that define (the status of) the gut ecosystem.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Microbioma Gastrointestinal , Animales , Bacterias/genética , Interacciones Huésped-Patógeno , Humanos , Interacciones Microbianas , Simbiosis
7.
Cell Host Microbe ; 25(5): 681-694.e8, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-31006637

RESUMEN

The microbiota and the gastrointestinal mucus layer play a pivotal role in protection against non-typhoidal Salmonella enterica serovar Typhimurium (S. Tm) colitis. Here, we analyzed the course of Salmonella colitis in mice lacking a functional mucus layer in the gut. Unexpectedly, in contrast to mucus-proficient littermates, genetically deficient mice were protected against Salmonella-induced gut inflammation in the streptomycin colitis model. This correlated with microbiota alterations and enrichment of the bacterial phylum Deferribacteres. Using gnotobiotic mice associated with defined bacterial consortia, we causally linked Mucispirillum schaedleri, currently the sole known representative of Deferribacteres present in the mammalian microbiota, to host protection against S. Tm colitis. Inhibition by M. schaedleri involves interference with S. Tm invasion gene expression, partly by competing for anaerobic electron acceptors. In conclusion, this study establishes M. schaedleri, a core member of the murine gut microbiota, as a key antagonist of S. Tm virulence in the gut.


Asunto(s)
Antibiosis , Bacterias Anaerobias/crecimiento & desarrollo , Colitis/prevención & control , Infecciones por Salmonella/prevención & control , Salmonella typhimurium/crecimiento & desarrollo , Animales , Colitis/inducido químicamente , Modelos Animales de Enfermedad , Vida Libre de Gérmenes , Ratones
8.
Front Microbiol ; 10: 758, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31031732

RESUMEN

Analyses of microbial diversity in marine sediments have identified a core set of taxa unique to the marine deep biosphere. Previous studies have suggested that these specialized communities are shaped by processes in the surface seabed, in particular that their assembly is associated with the transition from the bioturbated upper zone to the nonbioturbated zone below. To test this hypothesis, we performed a fine-scale analysis of the distribution and activity of microbial populations within the upper 50 cm of sediment from Aarhus Bay (Denmark). Sequencing and qPCR were combined to determine the depth distributions of bacterial and archaeal taxa (16S rRNA genes) and sulfate-reducing microorganisms (SRM) (dsrB gene). Mapping of radionuclides throughout the sediment revealed a region of intense bioturbation at 0-6 cm depth. The transition from bioturbated sediment to the subsurface below (7 cm depth) was marked by a shift from dominant surface populations to common deep biosphere taxa (e.g., Chloroflexi and Atribacteria). Changes in community composition occurred in parallel to drops in microbial activity and abundance caused by reduced energy availability below the mixed sediment surface. These results offer direct evidence for the hypothesis that deep subsurface microbial communities present in Aarhus Bay mainly assemble already centimeters below the sediment surface, below the bioturbation zone.

9.
Front Microbiol ; 9: 2038, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30233524

RESUMEN

Desulfatiglans-related organisms comprise one of the most abundant deltaproteobacterial lineages in marine sediments where they occur throughout the sediment column in a gradient of increasing sulfate and organic carbon limitation with depth. Characterized Desulfatiglans isolates are dissimilatory sulfate reducers able to grow by degrading aromatic hydrocarbons. The ecophysiology of environmental Desulfatiglans-populations is poorly understood, however, possibly utilization of aromatic compounds may explain their predominance in marine subsurface sediments. We sequenced and analyzed seven Desulfatiglans-related single-cell genomes (SAGs) from Aarhus Bay sediments to characterize their metabolic potential with regard to aromatic compound degradation and energy metabolism. The average genome assembly size was 1.3 Mbp and completeness estimates ranged between 20 and 50%. Five of the SAGs (group 1) originated from the sulfate-rich surface part of the sediment while two (group 2) originated from sulfate-depleted subsurface sediment. Based on 16S rRNA gene amplicon sequencing group 2 SAGs represent the more frequent types of Desulfatiglans-populations in Aarhus Bay sediments. Genes indicative of aromatic compound degradation could be identified in both groups, but the two groups were metabolically distinct with regard to energy conservation. Group 1 SAGs carry a full set of genes for dissimilatory sulfate reduction, whereas the group 2 SAGs lacked any genetic evidence for sulfate reduction. The latter may be due to incompleteness of the SAGs, but as alternative energy metabolisms group 2 SAGs carry the genetic potential for growth by acetogenesis and fermentation. Group 1 SAGs encoded reductive dehalogenase genes, allowing them to access organohalides and possibly conserve energy by their reduction. Both groups possess sulfatases unlike their cultured relatives allowing them to utilize sulfate esters as source of organic carbon and sulfate. In conclusion, the uncultivated marine Desulfatiglans populations are metabolically diverse, likely reflecting different strategies for coping with energy and sulfate limitation in the subsurface seabed.

10.
Appl Environ Microbiol ; 83(23)2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28939599

RESUMEN

Most sulfate-reducing microorganisms (SRMs) present in subsurface marine sediments belong to uncultured groups only distantly related to known SRMs, and it remains unclear how changing geochemical zones and sediment depth influence their community structure. We mapped the community composition and abundance of SRMs by amplicon sequencing and quantifying the dsrB gene, which encodes dissimilatory sulfite reductase subunit beta, in sediment samples covering different vertical geochemical zones ranging from the surface sediment to the deep sulfate-depleted subsurface at four locations in Aarhus Bay, Denmark. SRMs were present in all geochemical zones, including sulfate-depleted methanogenic sediment. The biggest shift in SRM community composition and abundance occurred across the transition from bioturbated surface sediments to nonbioturbated sediments below, where redox fluctuations and the input of fresh organic matter due to macrofaunal activity are absent. SRM abundance correlated with sulfate reduction rates determined for the same sediments. Sulfate availability showed a weaker correlation with SRM abundances and no significant correlation with the composition of the SRM community. The overall SRM species diversity decreased with depth, yet we identified a subset of highly abundant community members that persists across all vertical geochemical zones of all stations. We conclude that subsurface SRM communities assemble by the persistence of members of the surface community and that the transition from the bioturbated surface sediment to the unmixed sediment below is a main site of assembly of the subsurface SRM community.IMPORTANCE Sulfate-reducing microorganisms (SRMs) are key players in the marine carbon and sulfur cycles, especially in coastal sediments, yet little is understood about the environmental factors controlling their depth distribution. Our results suggest that macrofaunal activity is a key driver of SRM abundance and community structure in marine sediments and that a small subset of SRM species of high relative abundance in the subsurface SRM community persists from the sulfate-rich surface sediment to sulfate-depleted methanogenic subsurface sediment. More generally, we conclude that SRM communities inhabiting the subsurface seabed assemble by the selective survival of members of the surface community.


Asunto(s)
Bacterias/aislamiento & purificación , Bacterias/metabolismo , Sedimentos Geológicos/microbiología , Sulfatos/metabolismo , Bacterias/clasificación , Bacterias/genética , Bahías/microbiología , ADN Bacteriano/genética , Dinamarca , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/genética , Agua de Mar/microbiología
11.
Proc Natl Acad Sci U S A ; 114(11): 2940-2945, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28242677

RESUMEN

Bacterial and archaeal communities inhabiting the subsurface seabed live under strong energy limitation and have growth rates that are orders of magnitude slower than laboratory-grown cultures. It is not understood how subsurface microbial communities are assembled and whether populations undergo adaptive evolution or accumulate mutations as a result of impaired DNA repair under such energy-limited conditions. Here we use amplicon sequencing to explore changes of microbial communities during burial and isolation from the surface to the >5,000-y-old subsurface of marine sediment and identify a small core set of mostly uncultured bacteria and archaea that is present throughout the sediment column. These persisting populations constitute a small fraction of the entire community at the surface but become predominant in the subsurface. We followed patterns of genome diversity with depth in four dominant lineages of the persisting populations by mapping metagenomic sequence reads onto single-cell genomes. Nucleotide sequence diversity was uniformly low and did not change with age and depth of the sediment. Likewise, there was no detectable change in mutation rates and efficacy of selection. Our results indicate that subsurface microbial communities predominantly assemble by selective survival of taxa able to persist under extreme energy limitation.


Asunto(s)
Evolución Biológica , Sedimentos Geológicos/microbiología , Metagenómica , Microbiota , Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/genética , Biodiversidad , Biomasa , Variación Genética , Metagenómica/métodos , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...