Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Evol Lett ; 6(5): 344-357, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36254258

RESUMEN

With the rise of affordable next-generation sequencing technology, introgression-or the exchange of genetic materials between taxa-has become widely perceived to be a ubiquitous phenomenon in nature. Although this claim is supported by several keystone studies, no thorough assessment of the frequency of introgression across eukaryotes in nature has been performed to date. In this manuscript, we aim to address this knowledge gap by examining patterns of introgression across eukaryotes. We collated a single statistic, Patterson's D, which can be used as a test for introgression across 123 studies to further assess how taxonomic group, divergence time, and sequencing technology influence reports of introgression. Overall, introgression has mostly been measured in plants and vertebrates, with less attention given to the rest of the Eukaryotes. We find that the most frequently used metrics to detect introgression are difficult to compare across studies and even more so across biological systems due to differences in study effort, reporting standards, and methodology. Nonetheless, our analyses reveal several intriguing patterns, including the observation that differences in sequencing technologies may bias values of Patterson's D and that introgression may differ throughout the course of the speciation process. Together, these results suggest the need for a unified approach to quantifying introgression in natural communities and highlight important areas of future research that can be better assessed once this unified approach is met.

2.
Fungal Genet Biol ; 158: 103654, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34942368

RESUMEN

Histoplasma, a genus of dimorphic fungi, is the etiological agent of histoplasmosis, a pulmonary disease widespread across the globe. Whole genome sequencing has revealed that the genus harbors a previously unrecognized diversity of cryptic species. To date, studies have focused on Histoplasma isolates collected in the Americas with little knowledge of the genomic variation from other localities. In this report, we report the existence of a well-differentiated lineage of Histoplasma occurring in the Indian subcontinent. The group is differentiated enough to satisfy the requirements of a phylogenetic species, as it shows extensive genetic differentiation along the whole genome and has little evidence of gene exchange with other Histoplasma species. Next, we leverage this genetic differentiation to identify genetic changes that are unique to this group and that have putatively evolved through rapid positive selection. We found that none of the previously known virulence factors have evolved rapidly in the Indian lineage but find evidence of strong signatures of selection on other alleles potentially involved in clinically-important phenotypes. Our work serves as an example of the importance of correctly identifying species boundaries to understand the extent of selection in the evolution of pathogenic lineages. IMPORTANCE: Whole genome sequencing has revolutionized our understanding of microbial diversity, including human pathogens. In the case of fungal pathogens, a limiting factor in understanding the extent of their genetic diversity has been the lack of systematic sampling. In this piece, we show the results of a collection in the Indian subcontinent of the pathogenic fungus Histoplasma, the causal agent of a systemic mycosis. We find that Indian samples of Histoplasma form a distinct clade which is highly differentiated from other Histoplasma species. We also show that the genome of this lineage shows unique signals of natural selection. This work exemplifies how the combination of a robust sampling along with population genetics, and phylogenetics can reveal the precise genetic changes that differentiate lineages of fungal pathogens.


Asunto(s)
Histoplasma , Histoplasmosis , Genómica , Histoplasma/genética , Humanos , Filogenia , Secuenciación Completa del Genoma
3.
Mol Ecol Resour ; 21(7): 2278-2287, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33979028

RESUMEN

The use of genomic and phenotypic data to scan for outliers is a mainstay for studies of hybridization and speciation. Geographic cline analysis of natural hybrid zones is widely used to identify putative signatures of selection by detecting deviations from baseline patterns of introgression. As with other outlier-based approaches, demographic histories can make neutral regions appear to be under selection and vice versa. In this study, we use a forward-time individual-based simulation approach to evaluate the robustness of geographic cline analysis under different evolutionary scenarios. We modelled multiple stepping-stone hybrid zones with distinct age, deme sizes, and migration rates, and evolving under different types of selection. We found that drift distorts cline shapes and increases false positive rates for signatures of selection. This effect increases with hybrid zone age, particularly if migration between demes is low. Drift can also distort the signature of deleterious effects of hybridization, with genetic incompatibilities and particularly underdominance prone to spurious typing as adaptive introgression. Our results suggest that geographic clines are most useful for outlier analysis in young hybrid zones with large populations of hybrid individuals. Current approaches may overestimate adaptive introgression and underestimate selection against maladaptive genotypes.


Asunto(s)
Genoma , Genómica , Evolución Biológica , Genética de Población , Genotipo , Humanos , Hibridación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA