Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO J ; 42(24): e114221, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37987160

RESUMEN

Efficient treatment of acute myeloid leukemia (AML) patients remains a challenge despite recent therapeutic advances. Here, using a CRISPRi screen targeting chromatin factors, we identified the nucleosome-remodeling factor (NURF) subunit BPTF as an essential regulator of AML cell survival. We demonstrate that BPTF forms an alternative NURF chromatin remodeling complex with SMARCA5 and BAP18, which regulates the accessibility of a large set of insulator regions in leukemic cells. This ensures efficient CTCF binding and boundary formation between topologically associated domains that is essential for maintaining the leukemic transcriptional programs. We also demonstrate that the well-studied PHD2-BROMO chromatin reader domains of BPTF, while contributing to complex recruitment to chromatin, are dispensable for leukemic cell growth. Taken together, our results uncover how the alternative NURF complex contributes to leukemia and provide a rationale for its targeting in AML.


Asunto(s)
Proteínas de Drosophila , Leucemia Mieloide Aguda , Humanos , Cromatina/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Leucemia Mieloide Aguda/genética , Proteínas de Drosophila/metabolismo , Ensamble y Desensamble de Cromatina
2.
ACS Synth Biol ; 9(4): 733-748, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32142608

RESUMEN

Life is completely dependent on water. To analyze the role of water as a solvent in biology, we replaced water with heavy water (D2O) and investigated the biological effects by a wide range of techniques, using Schizosaccharomyces pombe as model organism. We show that high concentrations of D2O lead to altered glucose metabolism and growth retardation. After prolonged incubation in D2O, cells displayed gross morphological changes, thickened cell walls, and aberrant cytoskeletal organization. By transcriptomics and genetic screens, we show that the solvent replacement activates two signaling pathways: (1) the heat-shock response pathway and (2) the cell integrity pathway. Although the heat-shock response system upregulates various chaperones and other stress-relieving enzymes, we find that the activation of this pathway does not offer any fitness advantage to the cells under the solvent-replaced conditions. However, limiting the D2O-triggered activation of the cell integrity pathway allows cell growth when H2O is completely replaced with D2O. The isolated D2O-tolerant strains may aid biological production of deuterated biomolecules.


Asunto(s)
Óxido de Deuterio/farmacología , Mutación/genética , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/genética , Transducción de Señal/genética , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Óxido de Deuterio/metabolismo , Redes y Vías Metabólicas/genética , Schizosaccharomyces/metabolismo , Schizosaccharomyces/fisiología
3.
Nat Cell Biol ; 21(8): 924-932, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31358966

RESUMEN

The sebaceous gland (SG) is an essential component of the skin, and SG dysfunction is debilitating1,2. Yet, the cellular bases for its origin, development and subsequent maintenance remain poorly understood. Here, we apply large-scale quantitative fate mapping to define the patterns of cell fate behaviour during SG development and maintenance. We show that the SG develops from a defined number of lineage-restricted progenitors that undergo a programme of independent and stochastic cell fate decisions. Following an expansion phase, equipotent progenitors transition into a phase of homeostatic turnover, which is correlated with changes in the mechanical properties of the stroma and spatial restrictions on gland size. Expression of the oncogene KrasG12D results in a release from these constraints and unbridled gland expansion. Quantitative clonal fate analysis reveals that, during this phase, the primary effect of the Kras oncogene is to drive a constant fate bias with little effect on cell division rates. These findings provide insight into the developmental programme of the SG, as well as the mechanisms that drive tumour progression and gland dysfunction.


Asunto(s)
Proliferación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/inmunología , Homeostasis/fisiología , Células Madre/citología , Animales , Progresión de la Enfermedad , Ratones Transgénicos
4.
Cell Stem Cell ; 22(1): 35-49.e7, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29249464

RESUMEN

Tissue regeneration requires dynamic cellular adaptation to the wound environment. It is currently unclear how this is orchestrated at the cellular level and how cell fate is affected by severe tissue damage. Here we dissect cell fate transitions during colonic regeneration in a mouse dextran sulfate sodium (DSS) colitis model, and we demonstrate that the epithelium is transiently reprogrammed into a primitive state. This is characterized by de novo expression of fetal markers as well as suppression of markers for adult stem and differentiated cells. The fate change is orchestrated by remodeling the extracellular matrix (ECM), increased FAK/Src signaling, and ultimately YAP/TAZ activation. In a defined cell culture system recapitulating the extracellular matrix remodeling observed in vivo, we show that a collagen 3D matrix supplemented with Wnt ligands is sufficient to sustain endogenous YAP/TAZ and induce conversion of cell fate. This provides a simple model for tissue regeneration, implicating cellular reprogramming as an essential element.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Reprogramación Celular , Matriz Extracelular/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Fosfoproteínas/metabolismo , Regeneración , Animales , Biomarcadores/metabolismo , Proteínas de Ciclo Celular , Feto/metabolismo , Humanos , Mecanotransducción Celular , Ratones Endogámicos C57BL , Transducción de Señal , Transcripción Genética , Activación Transcripcional/genética , Proteínas Señalizadoras YAP
5.
Gastroenterology ; 153(6): 1662-1673.e10, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28923495

RESUMEN

BACKGROUND & AIMS: Fibrolamellar hepatocellular carcinoma (FL-HCC) is a primary liver cancer that predominantly affects children and young adults with no underlying liver disease. A somatic, 400 Kb deletion on chromosome 19 that fuses part of the DnaJ heat shock protein family (Hsp40) member B1 gene (DNAJB1) to the protein kinase cAMP-activated catalytic subunit alpha gene (PRKACA) has been repeatedly identified in patients with FL-HCC. However, the DNAJB1-PRKACA gene fusion has not been shown to induce liver tumorigenesis. We used the CRISPR/Cas9 technique to delete in mice the syntenic region on chromosome 8 to create a Dnajb1-Prkaca fusion and monitored the mice for liver tumor development. METHODS: We delivered CRISPR/Cas9 vectors designed to juxtapose exon 1 of Dnajb1 with exon 2 of Prkaca to create the Dnajb1-Prkaca gene fusion associated with FL-HCC, or control Cas9 vector, via hydrodynamic tail vein injection to livers of 8-week-old female FVB/N mice. These mice did not have any other engineered genetic alterations and were not exposed to liver toxins or carcinogens. Liver tissues were collected 14 months after delivery; genomic DNA was analyzed by PCR to detect the Dnajb1-Prkaca fusion, and tissues were characterized by histology, immunohistochemistry, RNA sequencing, and whole-exome sequencing. RESULTS: Livers from 12 of the 15 mice given the vectors to induce the Dnajb1-Prkaca gene fusion, but none of the 11 mice given the control vector, developed neoplasms. The tumors contained the Dnajb1-Prkaca gene fusion and had histologic and cytologic features of human FL-HCCs: large polygonal cells with granular, eosinophilic, and mitochondria-rich cytoplasm, prominent nucleoli, and markers of hepatocytes and cholangiocytes. In comparing expression levels of genes between the mouse tumor and non-tumor liver cells, we identified changes similar to those detected in human FL-HCC, which included genes that affect cell cycle and mitosis regulation. Genomic analysis of mouse neoplasms induced by the Dnajb1-Prkaca fusion revealed a lack of mutations in genes commonly associated with liver cancers, as observed in human FL-HCC. CONCLUSIONS: Using CRISPR/Cas9 technology, we found generation of the Dnajb1-Prkaca fusion gene in wild-type mice to be sufficient to initiate formation of tumors that have many features of human FL-HCC. Strategies to block DNAJB1-PRKACA might be developed as therapeutics for this form of liver cancer.


Asunto(s)
Biomarcadores de Tumor/genética , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas , Carcinoma Hepatocelular/genética , Transformación Celular Neoplásica/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/genética , Edición Génica/métodos , Fusión Génica , Proteínas del Choque Térmico HSP40/genética , Neoplasias Hepáticas/genética , Animales , Biomarcadores de Tumor/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/metabolismo , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Proteínas del Choque Térmico HSP40/metabolismo , Neoplasias Hepáticas/metabolismo , Ratones , Fenotipo , Factores de Tiempo
6.
Cell Stress Chaperones ; 22(1): 143-154, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27966061

RESUMEN

As a result of exposure to stress conditions, mutations, or defects during synthesis, cellular proteins are prone to misfold. To cope with such partially denatured proteins, cells mount a regulated transcriptional response involving the Hsf1 transcription factor, which drives the synthesis of molecular chaperones and other stress-relieving proteins. Here, we show that the fission yeast Schizosaccharomyces pombe orthologues of human BAG-1, Bag101, and Bag102, are Hsp70 co-chaperones that associate with 26S proteasomes. Only a subgroup of Hsp70-type chaperones, including Ssa1, Ssa2, and Sks2, binds Bag101 and Bag102 and key residues in the Hsp70 ATPase domains, required for interaction with Bag101 and Bag102, were identified. In humans, BAG-1 overexpression is typically observed in cancers. Overexpression of bag101 and bag102 in fission yeast leads to a strong growth defect caused by triggering Hsp70 to release and activate the Hsf1 transcription factor. Accordingly, the bag101-linked growth defect is alleviated in strains containing a reduced amount of Hsf1 but aggravated in hsp70 deletion strains. In conclusion, we propose that the fission yeast UBL/BAG proteins release Hsf1 from Hsp70, leading to constitutive Hsf1 activation and growth defects.


Asunto(s)
Factores de Transcripción del Choque Térmico/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Genes Reporteros , Factores de Transcripción del Choque Térmico/genética , Respuesta al Choque Térmico , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Análisis de Componente Principal , Complejo de la Endopetidasa Proteasomal/metabolismo , Schizosaccharomyces/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/genética , Temperatura , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Methods Mol Biol ; 1449: 421-39, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27613054

RESUMEN

The ubiquitin-proteasome system is the major pathway for intracellular protein degradation in eukaryotic cells. Due to the large number of genes dedicated to the ubiquitin-proteasome system, mapping degradation pathways for short lived proteins is a daunting task, in particular in mammalian cells that are not genetically tractable as, for instance, a yeast model system. Here, we describe a method relying on high-throughput cellular imaging of cells transfected with a targeted siRNA library to screen for components involved in degradation of a protein of interest. This method is a rapid and cost-effective tool which is also highly applicable for other studies on gene function.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , ARN Interferente Pequeño/metabolismo , Ubiquitina/metabolismo , Animales , Humanos , Complejo de la Endopetidasa Proteasomal/genética , Ubiquitina/genética
8.
EMBO J ; 35(2): 176-92, 2016 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-26620551

RESUMEN

During DNA replication, thousands of replication origins are activated across the genome. Chromatin architecture contributes to origin specification and usage, yet it remains unclear which chromatin features impact on DNA replication. Here, we perform a RNAi screen for chromatin regulators implicated in replication control by measuring RPA accumulation upon replication stress. We identify six factors required for normal rates of DNA replication and characterize a function of the bromodomain and PHD finger-containing protein 3 (BRPF3) in replication initiation. BRPF3 forms a complex with HBO1 that specifically acetylates histone H3K14, and genomewide analysis shows high enrichment of BRPF3, HBO1 and H3K14ac at ORC1-binding sites and replication origins found in the vicinity of TSSs. Consistent with this, BRPF3 is necessary for H3K14ac at selected origins and efficient origin activation. CDC45 recruitment, but not MCM2-7 loading, is impaired in BRPF3-depleted cells, identifying a BRPF3-dependent function of HBO1 in origin activation that is complementary to its role in licencing. We thus propose that BRPF3-HBO1 acetylation of histone H3K14 around TSS facilitates efficient activation of nearby replication origins.


Asunto(s)
Ciclo Celular/fisiología , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Origen de Réplica/fisiología , Acetilación , Ciclo Celular/genética , Línea Celular , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Replicación del ADN/genética , Replicación del ADN/fisiología , Histona Acetiltransferasas/genética , Humanos , Inmunohistoquímica , Origen de Réplica/genética
9.
Genes Dev ; 29(9): 910-22, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25886910

RESUMEN

DNA methylation is tightly regulated throughout mammalian development, and altered DNA methylation patterns are a general hallmark of cancer. The methylcytosine dioxygenase TET2 is frequently mutated in hematological disorders, including acute myeloid leukemia (AML), and has been suggested to protect CG dinucleotide (CpG) islands and promoters from aberrant DNA methylation. In this study, we present a novel Tet2-dependent leukemia mouse model that closely recapitulates gene expression profiles and hallmarks of human AML1-ETO-induced AML. Using this model, we show that the primary effect of Tet2 loss in preleukemic hematopoietic cells is progressive and widespread DNA hypermethylation affecting up to 25% of active enhancer elements. In contrast, CpG island and promoter methylation does not change in a Tet2-dependent manner but increases relative to population doublings. We confirmed this specific enhancer hypermethylation phenotype in human AML patients with TET2 mutations. Analysis of immediate gene expression changes reveals rapid deregulation of a large number of genes implicated in tumorigenesis, including many down-regulated tumor suppressor genes. Hence, we propose that TET2 prevents leukemic transformation by protecting enhancers from aberrant DNA methylation and that it is the combined silencing of several tumor suppressor genes in TET2 mutated hematopoietic cells that contributes to increased stem cell proliferation and leukemogenesis.


Asunto(s)
Carcinogénesis/genética , Metilación de ADN/genética , Proteínas de Unión al ADN/genética , Elementos de Facilitación Genéticos/genética , Regulación Neoplásica de la Expresión Génica , Células Madre Hematopoyéticas/patología , Proteínas Proto-Oncogénicas/genética , Animales , Proliferación Celular/genética , Dioxigenasas , Células Madre Hematopoyéticas/citología , Humanos , Ratones , Mutación/genética , Translocación Genética/genética
10.
Mol Cell Biol ; 34(6): 1031-45, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24396064

RESUMEN

The histone demethylase JMJD2C, also known as KDM4C/GASC1, has activity against methylated H3K9 and H3K36 and is amplified and/or overexpressed in human cancers. By the generation of Jmjd2c knockout mice, we demonstrate that loss of Jmjd2c is compatible with cellular proliferation, embryonic stem cell (ESC) self-renewal, and embryonic development. Moreover, we report that JMJD2C localizes to H3K4me3-positive transcription start sites in both primary cells and in the human carcinoma KYSE150 cell line containing an amplification of the JMJD2C locus. Binding is dependent on the double Tudor domain of JMJD2C, which recognizes H3K4me3 but not H4K20me2/me3 in vitro, showing a binding specificity different from that of the double Tudor domains of JMJD2A and JMJD2B. Depletion of JMJD2C in KYSE150 cells has a modest effect on H3K9me3 and H3K36me3 levels but impairs proliferation and leads to deregulated expression of a subset of target genes involved in cell cycle progression. Taking these findings together, we show that JMJD2C is targeted to H3K4me3-positive transcription start sites, where it can contribute to transcriptional regulation, and report that the putative oncogene JMJD2C generally is not required for cellular proliferation or embryonic development.


Asunto(s)
Desarrollo Embrionario/genética , Histonas/genética , Histona Demetilasas con Dominio de Jumonji/genética , Transcripción Genética/genética , Animales , Ciclo Celular/genética , Línea Celular , Línea Celular Tumoral , Proliferación Celular , Células Madre Embrionarias/metabolismo , Femenino , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Unión Proteica/genética , Sitio de Iniciación de la Transcripción
11.
PLoS Genet ; 9(4): e1003461, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23637629

RESUMEN

Embryonic development is tightly regulated by transcription factors and chromatin-associated proteins. H3K4me3 is associated with active transcription and H3K27me3 with gene repression, while the combination of both keeps genes required for development in a plastic state. Here we show that deletion of the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) results in major neonatal lethality due to respiratory failure. Jarid1b knockout embryos have several neural defects including disorganized cranial nerves, defects in eye development, and increased incidences of exencephaly. Moreover, in line with an overlap of Jarid1b and Polycomb target genes, Jarid1b knockout embryos display homeotic skeletal transformations typical for Polycomb mutants, supporting a functional interplay between Polycomb proteins and Jarid1b. To understand how Jarid1b regulates mouse development, we performed a genome-wide analysis of histone modifications, which demonstrated that normally inactive genes encoding developmental regulators acquire aberrant H3K4me3 during early embryogenesis in Jarid1b knockout embryos. H3K4me3 accumulates as embryonic development proceeds, leading to increased expression of neural master regulators like Pax6 and Otx2 in Jarid1b knockout brains. Taken together, these results suggest that Jarid1b regulates mouse development by protecting developmental genes from inappropriate acquisition of active histone modifications.


Asunto(s)
Histona Demetilasas con Dominio de Jumonji , Proteínas Represoras , Animales , Desarrollo Embrionario , Genes del Desarrollo , Histonas/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética , Ratones , Proteínas Nucleares/genética , Proteínas del Grupo Polycomb/genética , Proteínas Represoras/genética
12.
EMBO J ; 30(22): 4586-600, 2011 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-22020125

RESUMEN

H3K4 methylation is associated with active transcription and in combination with H3K27me3 thought to keep genes regulating development in a poised state. The contribution of enzymes regulating trimethylation of lysine 4 at histone 3 (H3K4me3) levels to embryonic stem cell (ESC) self-renewal and differentiation is just starting to emerge. Here, we show that the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) is dispensable for ESC self-renewal, but essential for ESC differentiation along the neural lineage. By genome-wide location analysis, we demonstrate that Jarid1b localizes predominantly to transcription start sites of genes encoding developmental regulators, of which more than half are also bound by Polycomb group proteins. Virtually all Jarid1b target genes are associated with H3K4me3 and depletion of Jarid1b in ESCs leads to a global increase of H3K4me3 levels. During neural differentiation, Jarid1b-depleted ESCs fail to efficiently silence lineage-inappropriate genes, specifically stem and germ cell genes. Our results delineate an essential role for Jarid1b-mediated transcriptional control during ESC differentiation.


Asunto(s)
Células Madre Embrionarias/fisiología , Histonas/metabolismo , Neurogénesis , Neuronas/fisiología , Transcripción Genética , Animales , Anticuerpos Monoclonales , Línea Celular , Sistema Nervioso Central/embriología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/citología , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes/métodos , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/inmunología , Histona Demetilasas con Dominio de Jumonji/metabolismo , Metilación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/citología , Proteínas del Grupo Polycomb , Regiones Promotoras Genéticas , Interferencia de ARN , ARN Interferente Pequeño , Proteínas Represoras/metabolismo
13.
Nature ; 473(7347): 343-8, 2011 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-21490601

RESUMEN

Enzymes catalysing the methylation of the 5-position of cytosine (mC) have essential roles in regulating gene expression and maintaining cellular identity. Recently, TET1 was found to hydroxylate the methyl group of mC, converting it to 5-hydroxymethyl cytosine (hmC). Here we show that TET1 binds throughout the genome of embryonic stem cells, with the majority of binding sites located at transcription start sites (TSSs) of CpG-rich promoters and within genes. The hmC modification is found in gene bodies and in contrast to mC is also enriched at CpG-rich TSSs. We provide evidence further that TET1 has a role in transcriptional repression. TET1 binds a significant proportion of Polycomb group target genes. Furthermore, TET1 associates and colocalizes with the SIN3A co-repressor complex. We propose that TET1 fine-tunes transcription, opposes aberrant DNA methylation at CpG-rich sequences and thereby contributes to the regulation of DNA methylation fidelity.


Asunto(s)
Citosina/análogos & derivados , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transcripción Genética , 5-Metilcitosina/análogos & derivados , Animales , Línea Celular , Islas de CpG/genética , Citosina/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/genética , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Regulación hacia Abajo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Técnicas de Silenciamiento del Gen , Ratones , Unión Proteica , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3 , Sitio de Iniciación de la Transcripción
14.
Nature ; 464(7286): 306-10, 2010 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-20075857

RESUMEN

The Polycomb group (PcG) proteins have an important role in controlling the expression of genes essential for development, differentiation and maintenance of cell fates. The Polycomb repressive complex 2 (PRC2) is believed to regulate transcriptional repression by catalysing the di- and tri-methylation of lysine 27 on histone H3 (H3K27me2/3). At present, it is unknown how the PcG proteins are recruited to their target promoters in mammalian cells. Here we show that PRC2 forms a stable complex with the Jumonji- and ARID-domain-containing protein, JARID2 (ref. 4). Using genome-wide location analysis, we show that JARID2 binds to more than 90% of previously mapped PcG target genes. Notably, we show that JARID2 is sufficient to recruit PcG proteins to a heterologous promoter, and that inhibition of JARID2 expression leads to a major loss of PcG binding and to a reduction of H3K27me3 levels on target genes. Consistent with an essential role for PcG proteins in early development, we demonstrate that JARID2 is required for the differentiation of mouse embryonic stem cells. Thus, these results demonstrate that JARID2 is essential for the binding of PcG proteins to target genes and, consistent with this, for the proper differentiation of embryonic stem cells and normal development.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Represoras/metabolismo , Animales , Diferenciación Celular , Línea Celular , Regulación de la Expresión Génica , Células HeLa , Humanos , Ratones , Proteínas del Tejido Nervioso/genética , Complejo Represivo Polycomb 2 , Proteínas del Grupo Polycomb , Regiones Promotoras Genéticas , Unión Proteica
15.
Mol Cell ; 35(4): 511-22, 2009 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-19716794

RESUMEN

The RAS-stimulated RAF-MEK-ERK pathway confers epithelial cells with critical motile and invasive capacities during development, tissue regeneration, and carcinoma progression, often via promoting the epithelial-mesenchymal transition (EMT). Many mechanisms by which ERK exerts this control remain elusive. We demonstrate that the ERK-activated kinase RSK is necessary to induce mesenchymal motility and invasive capacities in nontransformed epithelial and carcinoma cells. RSK is sufficient to induce certain motile responses. Expression profiling analysis revealed that a primary role of RSK is to induce transcription of a potent promotile/invasive gene program by FRA1-dependent and -independent mechanisms. The program enables RSK to coordinately modulate the extracellular environment, the intracellular motility apparatus, and receptors mediating communication between these compartments to stimulate motility and invasion. These findings uncover a mechanism whereby the RAS-ERK pathway controls epithelial cell motility by identifying RSK as a key effector, from which emanate multiple highly coordinate transcription-dependent mechanisms for stimulation of motility and invasive properties.


Asunto(s)
Carcinoma/enzimología , Movimiento Celular , Transdiferenciación Celular , Transformación Celular Neoplásica/metabolismo , Células Epiteliales/enzimología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Proteínas ras/metabolismo , Animales , Carcinoma/genética , Carcinoma/patología , Línea Celular , Movimiento Celular/genética , Transdiferenciación Celular/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Perros , Células Epiteliales/patología , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genotipo , Humanos , Mesodermo/enzimología , Mesodermo/patología , Invasividad Neoplásica , Fenotipo , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Transducción de Señal , Factores de Tiempo , Transcripción Genética , Transducción Genética
16.
J Bone Miner Res ; 19(7): 1144-53, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15176998

RESUMEN

UNLABELLED: Chloride channel activity is essential for osteoclast function. Consequently, inhibition of the osteoclastic chloride channel should prevent bone resorption. Accordingly, we tested a chloride channel inhibitor on bone turnover and found that it inhibits bone resorption without affecting bone formation. This study indicates that chloride channel inhibitors are highly promising for treatment of osteoporosis. INTRODUCTION: The chloride channel inhibitor, NS3736, blocked osteoclastic acidification and resorption in vitro with an IC50 value of 30 microM. When tested in the rat ovariectomy model for osteoporosis, daily treatment with 30 mg/kg orally protected bone strength and BMD by approximately 50% 6 weeks after surgery. Most interestingly, bone formation assessed by osteocalcin, mineral apposition rate, and mineralized surface index was not inhibited. MATERIALS AND METHODS: Analysis of chloride channels in human osteoclasts revealed that ClC-7 and CLIC1 were highly expressed. Furthermore, by electrophysiology, we detected a volume-activated anion channel on human osteoclasts. Screening 50 different human tissues showed a broad expression for CLIC1 and a restricted immunoreactivity for ClC-7, appearing mainly in osteoclasts, ovaries, appendix, and Purkinje cells. This highly selective distribution predicts that inhibition of ClC-7 should specifically target osteoclasts in vivo. We suggest that NS3736 is inhibiting ClC-7, leading to a bone-specific effect in vivo. RESULTS AND CONCLUSION: In conclusion, we show for the first time that chloride channel inhibitors can be used for prevention of ovariectomy-induced bone loss without impeding bone formation. We speculate that the coupling of bone resorption to bone formation is linked to the acidification of the resorption lacunae, thereby enabling compounds that directly interfere with this process to be able to positive uncouple this process resulting in a net bone gain.


Asunto(s)
Resorción Ósea/prevención & control , Canales de Cloruro/antagonistas & inhibidores , Osteoclastos/efectos de los fármacos , Tetrazoles/farmacología , Animales , Células Cultivadas , Canales de Cloruro/análisis , Canales de Cloruro/genética , Invaginaciones Cubiertas de la Membrana Celular/efectos de los fármacos , Femenino , Perfilación de la Expresión Génica , Humanos , Osteoclastos/citología , Osteoclastos/metabolismo , Osteogénesis/efectos de los fármacos , Ovariectomía , Ratas , Ratas Sprague-Dawley , Tetrazoles/administración & dosificación , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...