Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(38): 34928-34937, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37779967

RESUMEN

Because of their ability to promote growth, act as biopesticides, and improve abiotic stress tolerance, Trichoderma spp. have been used for plant seed coating. However, the mechanism for the promotion of plant growth remains unknown. In this study, we investigate the effect of fungal extracts on the plant plasma membrane (PM) H+-ATPase, which is essential for plant growth and often a target of plant-associated microbes. We show that Trichoderma harzianum extract increases H+-ATPase activity, and by fractionation and high-resolution mass spectrometry (MS), we identify the activating components trichorzin PA (tPA) II and tPA VI that belong to the class of peptaibols. Peptaibols are nonribosomal peptides that can integrate into membranes and form indiscriminate ion channels, which causes pesticidal activity. To further investigate peptaibol-mediated H+-ATPase activation, we compare the effect of tPA II and VI to that of the model peptaibol alamethicin (AlaM). We show that AlaM increases H+-ATPase turnover rates in a concentration-dependent manner, with a peak in activity measured at 31.25 µM, above which activity decreases. Using fluorescent probes and light scattering, we find that the AlaM-mediated increase in activity is not correlated to increased membrane fluidity or vesicle integrity, whereas the activity decrease at high AlaM concentrations is likely due to PM overloading of AlaM pores. Overall, our results suggest that the symbiosis of fungi and plants, specifically related to peptaibols, is a concentration-dependent balance, where peptaibols do not act only as biocontrol agents but also as plant growth stimulants.

2.
Structure ; 31(10): 1174-1183.e4, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37582356

RESUMEN

Severe Plasmodium falciparum malaria infections are caused by microvascular sequestration of parasites binding to the human endothelial protein C receptor (EPCR) via the multi-domain P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion ligands. Using cryogenic electron microscopy (Cryo-EM) and PfEMP1 sequence diversity analysis, we found that group A PfEMP1 CIDRα1 domains interact with the adjacent DBLα1 domain through central, conserved residues of the EPCR-binding site to adopt a compact conformation. Upon EPCR binding, the DBLα1 domain is displaced, and the EPCR-binding helix of CIDRα1 is turned, kinked, and twisted to reach a rearranged, stable EPCR-bound conformation. The unbound conformation and the required transition to the EPCR-bound conformation may represent a conformational masking mechanism of immune evasion for the PfEMP1 family.

3.
Biochimie ; 205: 3-26, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35963461

RESUMEN

We review the considerable progress during the recent decade in the endeavours of designing, optimising, and utilising carrier particle systems for structural and functional studies of membrane proteins in near-native environments. New and improved systems are constantly emerging, novel studies push the perceived limits of a given carrier system, and specific carrier systems consolidate and entrench themselves as the system of choice for particular classes of target membrane protein systems. This review covers the most frequently used carrier systems for such studies and emphasises similarities and differences between these systems as well as current trends and future directions for the field. Particular interest is devoted to the biophysical properties and membrane mimicking ability of each system and the manner in which this may impact an embedded membrane protein and an eventual structural or functional study.


Asunto(s)
Proteínas de la Membrana , Nanoestructuras , Proteínas de la Membrana/metabolismo , Membrana Dobles de Lípidos/química , Nanoestructuras/química
4.
Nanoscale Adv ; 4(21): 4526-4534, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36341300

RESUMEN

Supported lipid bilayers (SLBs) are commonly used as model systems mimicking biological membranes. Recently, we reported a new method to produce SLBs with incorporated membrane proteins, which is based on the application of peptide discs [Luchini et al., Analytical Chemistry, 2020, 92, 1081-1088]. Peptide discs are small discoidal particles composed of a lipid core and an outer belt of self-assembled 18A peptides. SLBs including membrane proteins can be formed by depositing the peptide discs on a solid support and subsequently removing the peptide by buffer rinsing. Here, we introduce a new variant of the 18A peptide, named dark peptide (d18A). d18A exhibits UV absorption at 214 nm, whereas the absorption at 280 nm is negligible. This improves sample preparation as it enables a direct quantification of the membrane protein concentration in the peptide discs by measuring UV absorption at 280 nm. We describe the application of the peptide discs prepared with d18A (dark peptide discs) to produce SLBs with a membrane protein, synaptobrevin 2 (VAMP2). The collected data showed the successful formation of SLBs with high surface coverage and incorporation of VAMP2 in a single orientation with the extramembrane domain exposed towards the bulk solvent. Compared to 18A, we found that d18A was more efficiently removed from the SLB. Our data confirmed the structural organisation of VAMP2 as including both α-helical and ß-sheet secondary structure. We further verified the orientation of VAMP2 in the SLBs by characterising the binding of VAMP2 with α-synuclein. These results point at the produced SLBs as relevant membrane models for biophysical studies as well as nanostructured biomaterials.

5.
Elife ; 112022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35129435

RESUMEN

The CorA family of proteins regulates the homeostasis of divalent metal ions in many bacteria, archaea, and eukaryotic mitochondria, making it an important target in the investigation of the mechanisms of transport and its functional regulation. Although numerous structures of open and closed channels are now available for the CorA family, the mechanism of the transport regulation remains elusive. Here, we investigated the conformational distribution and associated dynamic behaviour of the pentameric Mg2+ channel CorA at room temperature using small-angle neutron scattering (SANS) in combination with molecular dynamics (MD) simulations and solid-state nuclear magnetic resonance spectroscopy (NMR). We find that neither the Mg2+-bound closed structure nor the Mg2+-free open forms are sufficient to explain the average conformation of CorA. Our data support the presence of conformational equilibria between multiple states, and we further find a variation in the behaviour of the backbone dynamics with and without Mg2+. We propose that CorA must be in a dynamic equilibrium between different non-conducting states, both symmetric and asymmetric, regardless of bound Mg2+ but that conducting states become more populated in Mg2+-free conditions. These properties are regulated by backbone dynamics and are key to understanding the functional regulation of CorA.


Asunto(s)
Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Magnesio/metabolismo , Transporte Biológico , Espectroscopía de Resonancia Magnética , Modelos Químicos , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica
6.
Langmuir ; 37(22): 6681-6690, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34038130

RESUMEN

Nanodiscs based on membrane scaffold proteins (MSPs) and phospholipids are used as membrane mimics to stabilize membrane proteins in solution for structural and functional studies. Combining small-angle X-ray scattering (SAXS), differential scanning calorimetry (DSC), and time-resolved small-angle neutron scattering (TR-SANS), we characterized the structure and lipid bilayer properties of five different nanodiscs made with dimyristoylphosphatidylcholine and different MSPs varying in size, charge, and circularization. Our SAXS modeling showed that the structural parameters of the embedded lipids are all similar, irrespective of the MSP properties. DSC showed that the lipid packing is not homogeneous in the nanodiscs and that a 20 Å wide boundary layer of lipids with perturbed packing is located close to the MSP, while the packing of central lipids is tighter than in large unilamellar vesicles. Finally, TR-SANS showed that lipid exchange rates in nanodiscs decrease with increasing nanodisc size and are lower for the nanodiscs made with supercharged MSPs compared to conventional nanodiscs. Altogether, the results provide a thorough biophysical understanding of the nanodisc as a model membrane system, which is important in order to carry out and interpret experiments on membrane proteins embedded in such systems.

7.
Biochim Biophys Acta Biomembr ; 1863(1): 183495, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33189719

RESUMEN

Apolipoproteins are vital to lipid metabolism and cholesterol transport in the human body. Here we present a structural study of the lipid-bound particles formed by ApoE3 in a full-length and a truncated version. The particles are formed with, respectively, POPC and DMPC and investigated by small-angle X-ray scattering and negative stain electron microscopy. We find that lipid-bound ApoE3 particles are elliptical, disc-shaped particles composed of a central lipid bilayer encircled by two amphipathic ApoE3 proteins. We went on to investigate a truncated form of ApoE3 containing only residue 80 to 255 (ApoE380-255), which is the central helical repeat segment of ApoE3. The lipid-bound ApoE380-255 particles are found to have the same morphology as the particles with full-length ApoE3. However, they are larger, and form more heterogeneous discoidal structures with four proteins per particle. This behavior is in contrast to ApoA1 where the highly similar helical repeat domain determines the size and stoichiometry of the formed particles both in the case of full-length and truncated ApoA1. Our data hence points towards different mechanisms for lipid bilayer structural modulation by ApoA1 and ApoE3 due to different roles of the non-repeat segments.


Asunto(s)
Apolipoproteína E3/química , Dimiristoilfosfatidilcolina/química , Membrana Dobles de Lípidos/química , Fosfatidilcolinas/química , Humanos
8.
Elife ; 92020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32729831

RESUMEN

Nanodiscs are membrane mimetics that consist of a protein belt surrounding a lipid bilayer, and are broadly used for characterization of membrane proteins. Here, we investigate the structure, dynamics and biophysical properties of two small nanodiscs, MSP1D1ΔH5 and ΔH4H5. We combine our SAXS and SANS experiments with molecular dynamics simulations and previously obtained NMR and EPR data to derive and validate a conformational ensemble that represents the structure and dynamics of the nanodisc. We find that it displays conformational heterogeneity with various elliptical shapes, and with substantial differences in lipid ordering in the centre and rim of the discs. Together, our results reconcile previous apparently conflicting observations about the shape of nanodiscs, and pave the way for future integrative studies of larger complex systems such as membrane proteins embedded in nanodiscs.


Asunto(s)
Espectroscopía de Resonancia Magnética , Nanoestructuras/ultraestructura , Difracción de Neutrones , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Simulación de Dinámica Molecular
9.
Anal Chem ; 92(1): 1081-1088, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31769649

RESUMEN

In vitro characterization of membrane proteins requires experimental approaches providing mimics of the microenvironment that proteins encounter in native membranes. In this context, supported lipid bilayers provide a suitable platform to investigate membrane proteins by a broad range of surface-sensitive techniques such as neutron reflectometry (NR), quartz crystal microbalance with dissipation monitoring (QCM-D), surface plasmon resonance (SPR), atomic force microscopy (AFM), and fluorescence microscopy. Nevertheless, the successful incorporation of membrane proteins in lipid bilayers with sufficiently high concentration and controlled orientation relative to the bilayer remains challenging. We propose the unconventional use of peptide discs made by phospholipids and amphipathic 18A peptides to mediate the formation of supported phospholipid bilayers with two different types of membrane proteins, CorA and tissue factor (TF). The membrane proteins are reconstituted in peptide discs, deposited on a solid surface, and the peptide molecules are then removed with extensive buffer washes. This leaves a lipid bilayer with a relatively high density of membrane proteins on the support surface. As a very important feature, the strategy allows membrane proteins with one large extramembrane domain to be oriented in the bilayer, thus mimicking the in vivo situation. The method is highly versatile, and we show its general applicability by characterizing with the above-mentioned surface-sensitive techniques two different membrane proteins, which were efficiently loaded in the supported bilayers with ∼0.6% mol/mol (protein/lipid) concentration corresponding to 35% v/v for CorA and 8% v/v for TF. Altogether, the peptide disc mediated formation of supported lipid bilayers with membrane proteins represents an attractive strategy for producing samples for structural and functional investigations of membrane proteins and for preparation of suitable platforms for drug testing or biosensor development.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Membrana Dobles de Lípidos/metabolismo , Silicatos de Aluminio/química , Oro/química , Humanos , Membrana Dobles de Lípidos/química , Péptidos/química , Fosfatidilcolinas/química , Fosfatidilserinas/química , Proteínas Recombinantes/metabolismo , Dióxido de Silicio/química , Tromboplastina/metabolismo
10.
Biochemistry ; 58(50): 5052-5065, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31747254

RESUMEN

A hallmark of Parkinson's disease is the presence of Lewy bodies consisting of lipids and proteins, mainly fibrillated α-synuclein (aSN). aSN is an intrinsically disordered protein exerting its physiological role in an ensemble of states, one of which coexists in large assemblies with lipids, recently termed co-structures. Here, we decipher the kinetics of aSN:lipid co-structure formation to decode its mechanism of formation, and we show that the co-structures form with a distinct stoichiometry. Through seeded fibrillation assays, we demonstrate that aSN:lipid co-structures accelerate aSN fibril nucleation compared to lipid vesicles alone. A small-angle X-ray scattering-based model is proposed in which aSN decorates the lipid vesicle surface, yielding properties similar to those of the fibril surface, enhancing fibril nucleation. The delicate balance of aSN structural states close to and on the membrane may under given conditions, e.g., increased local concentrations, be a crucial switching factor between functional and pathological behavior.


Asunto(s)
Amiloide/química , Metabolismo de los Lípidos , Lípidos/química , Multimerización de Proteína , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Cinética , Modelos Moleculares , Estructura Secundaria de Proteína
11.
FEBS J ; 286(9): 1734-1751, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30675761

RESUMEN

Recently, an enzymatic reaction was utilized to covalently link the N and C termini of membrane scaffold proteins to produce circularized nanodiscs that were more homogeneous and stable than standard nanodiscs. We continue this development and aim for obtaining high yields of stable and monodisperse nanodiscs for structural studies of membrane proteins by solution small-angle scattering techniques. Based on the template MSP1E3D1, we designed an optimized membrane scaffold protein (His-lsMSP1E3D1) with a sortase recognition motif and high abundance of solubility-enhancing negative charges. With these modifications, we show that high protein expression is maintained and that the circularization reaction is efficient, such that we obtain a high yield of circularized membrane scaffold protein (csMSP1E3D1) and downstream circularized nanodiscs. We characterize the circularized protein and corresponding nanodiscs biophysically by small-angle X-ray scattering, size-exclusion chromatography, circular dichroism spectroscopy, and light scattering and compare to noncircularized samples. First, we show that circularized and noncircularized (lsMSP1E3D1) nanodiscs are structurally similar and have the expected nanodisc structure. Second, we show that lsMSP1E3D1 nanodiscs are more stable compared to the template MSP1E3D1 nanodiscs as an effect of the extra negative charges and that csMSP1E3D1 nanodiscs have further improved stability as an effect of circularization. Finally, we show that a membrane protein can be efficiently incorporated in csMSP1E3D1 nanodiscs. Large-scale production methods for circularized nanodiscs with improved thermal and temporal stability will facilitate better access to the nanodisc technology and enable applications at physiologically relevant temperatures.


Asunto(s)
Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Nanoestructuras/química , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Cromatografía por Intercambio Iónico , Dicroismo Circular , Membrana Dobles de Lípidos/aislamiento & purificación , Proteínas de la Membrana/aislamiento & purificación , Fosfatidilcolinas/química , Agregado de Proteínas , Desnaturalización Proteica , Proteínas Recombinantes/química , Dispersión del Ángulo Pequeño , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Solubilidad , Soluciones , Thermotoga maritima/química , Difracción de Rayos X
12.
IUCrJ ; 5(Pt 6): 780-793, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30443361

RESUMEN

The AMPA receptor GluA2 belongs to the family of ionotropic glutamate receptors, which are responsible for most of the fast excitatory neuronal signalling in the central nervous system. These receptors are important for memory and learning, but have also been associated with brain diseases such as Alzheimer's disease and epilepsy. Today, one drug is on the market for the treatment of epilepsy targeting AMPA receptors, i.e. a negative allosteric modulator of these receptors. Recently, crystal structures and cryo-electron microscopy (cryo-EM) structures of full-length GluA2 in the resting (apo), activated and desensitized states have been reported. Here, solution structures of full-length GluA2 are reported using small-angle neutron scattering (SANS) with a novel, fully matched-out detergent. The GluA2 solution structure was investigated in the resting state as well as in the presence of AMPA and of the negative allosteric modulator GYKI-53655. In solution and at neutral pH, the SANS data clearly indicate that GluA2 is in a compact form in the resting state. The solution structure resembles the crystal structure of GluA2 in the resting state, with an estimated maximum distance (D max) of 179 ± 11 Šand a radius of gyration (R g) of 61.9 ± 0.4 Å. An ab initio model of GluA2 in solution generated using DAMMIF clearly showed the individual domains, i.e. the extracellular N-terminal domains and ligand-binding domains as well as the transmembrane domain. Solution structures revealed that GluA2 remained in a compact form in the presence of AMPA or GYKI-53655. At acidic pH only, GluA2 in the presence of AMPA adopted a more open conformation of the extracellular part (estimated D max of 189 ± 5 Šand R g of 65.2 ± 0.5 Å), resembling the most open, desensitized class 3 cryo-EM structure of GluA2 in the presence of quisqualate. In conclusion, this methodological study may serve as an example for future SANS studies on membrane proteins.

13.
Langmuir ; 34(42): 12569-12582, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30239200

RESUMEN

Phospholipid nanodiscs have quickly become a widely used platform for studies of membrane proteins. However, the molecular self-assembly process that ultimately should place a membrane protein inside a nanodisc is not well understood. This poses a challenge for a successful high-yield reconstitution of general membrane proteins into nanodiscs. In the present work, the self-assembly process of POPC-MSP1D1 nanodiscs was carefully investigated by systematically modulating the reconstitution parameters and probing the effect with a small-angle X-ray scattering analysis of the resulting nanodiscs. First, it was established that nanodiscs prepared using the standard protocol followed a narrow but significant size distribution and that the formed nanodiscs were stable at room temperature over a time range of about a week. Systematic variation of the POPC/MSP1D1 stoichiometry of the reconstitution mixture showed that a ratio of less than 75:1 resulted in lipid-poor nanodiscs, whereas ratios of 75:1 and larger resulted in nanodiscs with constant POPC/MSP1D1 ratios of 60:1. A central step in the self-assembly process consists in adding detergent-absorbing resin beads to the reconstitution mixture to remove the reconstitution detergent. Surprisingly, it was found that this step did not play a significant role for the shape and stoichiometry of the formed nanodiscs. Finally, the effect of the choice of detergent used in the reconstitution process was investigated. It was found that detergent type is a central determining factor for the shape and stoichiometry of the formed nanodiscs. A significantly increasing POPC/MSP1D1 stoichiometry of the formed nanodiscs was observed as the reconstitution detergent type is changed in the order: Tween80, DDM, Triton X-100, OG, CHAPS, Tween20, and Cholate, but with no simple correlation to the characteristics of the detergent. This emphasizes that the detergents optimal for solution storage and crystallization of membrane proteins, in particular DDM, should not be used alone for nanodisc reconstitution. However, our data also show that when applying mixtures of the reconstitution detergent cholate and the storage detergents DDM or OG, cholate dominates the reconstitution process and nanodiscs are obtained, which resemble those formed without storage detergents.

14.
Acta Crystallogr D Struct Biol ; 74(Pt 12): 1178-1191, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30605132

RESUMEN

Small-angle neutron scattering (SANS) is maturing as a method for studying complex biological structures. Owing to the intrinsic ability of the technique to discern between 1H- and 2H-labelled particles, it is especially useful for contrast-variation studies of biological systems containing multiple components. SANS is complementary to small-angle X-ray scattering (SAXS), in which similar contrast variation is not easily performed but in which data with superior counting statistics are more easily obtained. Obtaining small-angle scattering (SAS) data on monodisperse complex biological structures is often challenging owing to sample degradation and/or aggregation. This problem is enhanced in the D2O-based buffers that are typically used in SANS. In SAXS, such problems are solved using an online size-exclusion chromatography (SEC) setup. In the present work, the feasibility of SEC-SANS was investigated using a series of complex and difficult samples of membrane proteins embedded in nanodisc particles that consist of both phospholipid and protein components. It is demonstrated that SEC-SANS provides data of sufficient signal-to-noise ratio for these systems, while at the same time circumventing aggregation. By combining SEC-SANS and SEC-SAXS data, an optimized basis for refining structural models of the investigated structures is obtained.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Transporte de Catión/química , Difracción de Neutrones/métodos , Fosfolípidos/química , Dispersión del Ángulo Pequeño , Thermotoga maritima/química , Cromatografía en Gel , Diseño de Equipo , Nanoestructuras/química , Difracción de Neutrones/instrumentación , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...