Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 298
Filtrar
1.
Sci Rep ; 14(1): 10012, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693138

RESUMEN

Beta-glucosidases catalyze the hydrolysis of the glycosidic bonds of cellobiose, producing glucose, which is a rate-limiting step in cellulose biomass degradation. In industrial processes, ß-glucosidases that are tolerant to glucose and stable under harsh industrial reaction conditions are required for efficient cellulose hydrolysis. In this study, we report the molecular cloning, Escherichia coli expression, and functional characterization of a ß-glucosidase from the gene, CelGH3_f17, identified from metagenomics libraries of an Ethiopian soda lake. The CelGH3_f17 gene sequence contains a glycoside hydrolase family 3 catalytic domain (GH3). The heterologous expressed and purified enzyme exhibited optimal activity at 50 °C and pH 8.5. In addition, supplementation of 1 M salt and 300 mM glucose enhanced the ß-glucosidase activity. Most of the metal ions and organic solvents tested did not affect the ß-glucosidase activity. However, Cu2+ and Mn2+ ions, Mercaptoethanol and Triton X-100 reduce the activity of the enzyme. The studied ß-glucosidase enzyme has multiple industrially desirable properties including thermostability, and alkaline, salt, and glucose tolerance.


Asunto(s)
Biomasa , Lagos , beta-Glucosidasa , beta-Glucosidasa/genética , beta-Glucosidasa/metabolismo , beta-Glucosidasa/química , Lagos/microbiología , Metagenómica/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Metagenoma , Clonación Molecular , Estabilidad de Enzimas , Hidrólisis , Concentración de Iones de Hidrógeno , Celulosa/metabolismo , Temperatura , Glucosa/metabolismo
2.
Commun Chem ; 7(1): 75, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570707

RESUMEN

To broaden the range in structures and properties, and therefore the applicability of sustainable foams based on wheat gluten expanded with ammonium-bicarbonate, we show here how three naturally ocurring multifunctional additives affect their properties. Citric acid yields foams with the lowest density (porosity of ~50%) with mainly closed cells. Gallic acid acts as a radical scavenger, yielding the least crosslinked/ aggregated foam. The use of a low amount of this acid yields foams with the highest uptake of the body-fluid model substance (saline, ~130% after 24 hours). However, foams with genipin show a large and rapid capillary uptake (50% in one second), due to their high content of open cells. The most dense and stiff foam is obtained with one weight percent genipin, which is also the most crosslinked. Overall, the foams show a high energy loss-rate under cyclic compression (84-92% at 50% strain), indicating promising cushioning behaviour. They also show a low compression set, indicating promising sealability. Overall, the work here provides a step towards using protein biofoams as a sustainable alternative to fossil-based plastic/rubber foams in applications where absorbent and/or mechanical properties play a key role.

3.
Plants (Basel) ; 13(4)2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38498534

RESUMEN

Cadmium (Cd) and drought stresses are becoming dominant in a changing climate. This study explored the impact of Cd and Cd + drought stress on durum wheat grown in soil and sand at two Cd levels. The physiological parameters were studied using classical methods, while the root architecture was explored using non-invasive neutron computed tomography (NCT) for the first time. Under Cd + drought, all the gas exchange parameters were significantly affected, especially at 120 mg/kg Cd + drought. Elevated Cd was found in the sand-grown roots. We innovatively show the Cd stress impact on the wheat root volume and architecture, and the water distribution in the "root-growing media" was successfully visualized using NCT. Diverse and varying root architectures were observed for soil and sand under the Cd stress compared to the non-stress conditions, as revealed using NCT. The intrinsic structure of the growing medium was responsible for a variation in the water distribution pattern. This study demonstrated a pilot approach to use NCT for quantitative and in situ mapping of Cd stress on wheat roots and visualized the water dynamics in the rhizosphere. The physiological and NCT data provide valuable information to relate further to genetic information for the identification of Cd-resilient wheat varieties in the changing climate.

4.
PLoS One ; 19(2): e0298350, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38359024

RESUMEN

Climate change-induced drought has an effect on the nutritional quality of wheat. Here, the impact of drought at different plant stages on mineral content in mature wheat was evaluated in 30 spring-wheat lines of diverse backgrounds (modern, old and wheat-rye-introgressions). Genotypes with rye chromosome 3R introgression showed a high accumulation of several important minerals, including Zn and Fe, and these also showed stability across drought conditions. High Se content was found in genotypes with chromosome 1R. Old cultivars (K, Mg, Na, P and S) and 2R introgression lines (Fe, Ca, Mn, Mg and Na) demonstrated high mineral yield at early and late drought, respectively. Based on the low nutritional value often reported for modern wheat and negative climate effects on the stability of mineral content and yield, genes conferring high Zn/Fe, Se, and stable mineral yield under drought at various plant stages should be explicitly explored among 3R, 1R, old and 2R genotypes, respectively.


Asunto(s)
Sequías , Triticum , Triticum/genética , Minerales , Genotipo , Estructuras de las Plantas
5.
J Neurol Neurosurg Psychiatry ; 95(6): 554-560, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38212058

RESUMEN

BACKGROUND: Large register-based studies have reported an association between head trauma and increased risk of multiple sclerosis (MS). We aimed to investigate possible interactions between head trauma and MS-associated HLA genes in relation to MS risk. METHODS: We used a Swedish population-based case-control study (2807 incident cases, 5950 matched controls with HLA genotypes available for 2057 cases, 2887 controls). Subjects with and without a history of self-reported head trauma were compared regarding MS risk, by calculating ORs with 95% CIs using logistic regression models. Additive interaction between head trauma, HLA-DRB1*1501 and absence of HLA-A*0201, was assessed by calculating the attributable proportion (AP) due to interaction. RESULTS: A history of head trauma was associated with a 30% increased risk of subsequently developing MS (OR 1.34, 95% CI 1.17 to 1.53), with a trend showing increased risk of MS with increasing number of head impacts (p=0.03). We observed synergistic effects between recent head trauma and HLA-DRB1*15:01 as well as absence of HLA*02:01 in relation to MS risk (each AP 0.40, 95% CI 0.1 to 0.7). Recent head trauma in individuals with both genetic risk factors rendered an 18-fold increased risk of MS, compared with those with neither the genetic risk factors nor a history of head trauma (OR 17.7, 95% CI 7.13 to 44.1). CONCLUSIONS: Our findings align with previous observations of a dose-dependent association between head trauma and increased risk of MS and add a novel aspect of this association by revealing synergistic effects between recent head trauma and MS-associated HLA genes.


Asunto(s)
Traumatismos Craneocerebrales , Predisposición Genética a la Enfermedad , Cadenas HLA-DRB1 , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/genética , Esclerosis Múltiple/epidemiología , Femenino , Masculino , Estudios de Casos y Controles , Cadenas HLA-DRB1/genética , Predisposición Genética a la Enfermedad/genética , Traumatismos Craneocerebrales/epidemiología , Adulto , Suecia/epidemiología , Persona de Mediana Edad , Genotipo , Factores de Riesgo , Antígeno HLA-A2/genética , Adulto Joven , Anciano
6.
Mil Psychol ; 36(1): 58-68, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38193870

RESUMEN

Military personnel needs to be resilient to be able to remain effective, motivated, and in good mental and physical health. Military organizations select on resilience to determine whether candidates are psychologically fit for their job. The INSPIRE Resilience Scale (IRS) is such a selection instrument that aims to assess the psychological resilience potential of candidates in high-risk professions. A longitudinal predictive validity study was conducted in five European Defense organizations and in the Dutch National Police. The IRS was submitted in selection (N = 11,404), and criterion data about performance and health were collected in the second half of the first training year (N = 726). The results based on correlational and regression analyses showed that the IRS scores significantly predicted the criterion measures. Emotional stability, part of the IRS, turned out to be the best predictor. Results also showed that candidates who dropped out of training had significantly lower means on the IRS in selection than candidates who were still in training in the second half of the first training year. Overall, the IRS proved to be a valid instrument to assess resilience potential in candidates for high-risk professions. Selecting on resilience may therefore contribute to training success and reduction of health problems.


Asunto(s)
Personal Militar , Resiliencia Psicológica , Humanos , Emociones , Etnicidad , Policia
7.
Trends Biotechnol ; 42(4): 464-478, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37880066

RESUMEN

Since the first administration of insulin to a person with diabetes in 1922, scientific contributions from academia and industry have improved insulin therapy and access. The pharmaceutical need for insulin is now more than 40 tons annually, half of which is produced by recombinant secretory expression in Saccharomyces cerevisiae. We discuss how, in this yeast species, adaptation of insulin precursors by removable structural elements is pivotal for efficient secretory expression. The technologies reviewed have been implemented at industrial scale and are seminal for the supply of human insulin and insulin analogues to people with diabetes now and in the future. Engineering of a target protein with removable structural elements may provide a general approach to yield optimisation.


Asunto(s)
Diabetes Mellitus , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Insulina/genética , Proteínas Recombinantes/metabolismo
8.
Front Microbiol ; 14: 1270270, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37901828

RESUMEN

Lipases are used for the synthesis of different compounds in the chemical, pharmaceutical, and food industries. Most of the reactions are carried out in non-aqueous media and often at elevated temperature, requiring the use of organic solvent-tolerant thermostable lipases. However, most known lipases are not stable in the presence of organic solvents and at elevated temperature. In this study, an organic solvent-tolerant thermostable lipase was obtained from Brevibacillus sp. SHI-160, a moderate thermophile isolated from a hot spring in the East African Rift Valley. The enzyme was optimally active at 65°C and retained over 90% of its activity after 1 h of incubation at 70°C. High lipase activity was measured in the pH range of 6.5 to 9.0 with an optimum pH of 8.5. The enzyme was stable in the presence of both polar and non-polar organic solvents. The stability of the enzyme in the presence of polar organic solvents allowed the development of an efficient downstream processing using an alcohol-salt-based aqueous two-phase system (ATPS). Thus, in the presence of 2% salt, over 98% of the enzyme partitioned to the alcohol phase. The ATPS-recovered enzyme was directly immobilized on a solid support through adsorption and successfully used to catalyze a transesterification reaction between paranitrophenyl palmitate and short-chain alcohols in non-aqueous media. This shows the potential of lipase SHI-160 to catalyze reactions in non-aqueous media for the synthesis of valuable compounds. The integrated approach developed for enzyme production and cheap and efficient downstream processing using ATPS could allow a significant reduction in enzyme production costs. The results also show the potential of extreme environments in the East African Rift Valley as sources of valuable microbial genetic resources for the isolation of novel lipases and other industrially important enzymes.

9.
PLoS One ; 18(10): e0292724, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37824577

RESUMEN

Control of stem rust, caused by Puccinia graminis f.sp. tritici, a highly destructive fungal disease of wheat, faces continuous challenges from emergence of new virulent races across wheat-growing continents. Using combinations of broad-spectrum resistance genes could impart durable stem rust resistance. This study attempted transfer of Sr59 resistance gene from line TA5094 (developed through CSph1bM-induced T2DS·2RL Robertsonian translocation conferring broad-spectrum resistance). Poor agronomic performance of line TA5094 necessitates Sr59 transfer to adapted genetic backgrounds and utility evaluations for wheat improvement. Based on combined stem rust seedling and molecular analyses, 2070 BC1F1 and 1230 BC2F1 plants were derived from backcrossing BAJ#1, KACHU#1, and REEDLING#1 with TA5094. Genotyping-by-sequencing (GBS) results revealed the physical positions of 15,116 SNPs on chromosome 2R. The adapted genotypes used for backcrossing were found not to possess broad-spectrum resistance to selected stem rust races, whereas Sr59-containing line TA5094 showed resistance to all races tested. Stem rust seedling assays combined with kompetitive allele-specific PCR (KASP) marker analysis successfully selected and generated the BC2F2 population, which contained the Sr59 gene, as confirmed by GBS. Early-generation data from backcrossing suggested deviations from the 3:1 segregation, suggesting that multiple genes may contribute to Sr59 resistance reactions. Using GBS marker data (40,584 SNPs in wheat chromosomes) to transfer the recurrent parent background to later-generation populations resulted in average genome recovery of 71.2% in BAJ#1*2/TA5094, 69.8% in KACHU#1*2/TA5094, and 70.5% in REEDLING#1*2/TA5094 populations. GBS data verified stable Sr59 introgression in BC2F2 populations, as evidenced by presence of the Ph1 locus and absence of the 50,936,209 bp deletion in CSph1bM. Combining phenotypic selections, stem rust seedling assays, KASP markers, and GBS data substantially accelerated transfer of broad-spectrum resistance into adapted genotypes. Thus, this study demonstrated that the Sr59 resistance gene can be introduced into elite genetic backgrounds to mitigate stem rust-related yield losses.


Asunto(s)
Basidiomycota , Triticum , Triticum/genética , Triticum/microbiología , Genotipo , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Alelos , Basidiomycota/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
10.
Protein Sci ; 32(10): e4726, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37421602

RESUMEN

Efficient identification of epitopes is crucial for drug discovery and design as it enables the selection of optimal epitopes, expansion of lead antibody diversity, and verification of binding interface. Although high-resolution low throughput methods like x-ray crystallography can determine epitopes or protein-protein interactions accurately, they are time-consuming and can only be applied to a limited number of complexes. To overcome these limitations, we have developed a rapid computational method that incorporates N-linked glycans to mask epitopes or protein interaction surfaces, thereby providing a mapping of these regions. Using human coagulation factor IXa (fIXa) as a model system, we computationally screened 158 positions and expressed 98 variants to test experimentally for epitope mapping. We were able to delineate epitopes rapidly and reliably through the insertion of N-linked glycans that efficiently disrupted binding in a site-selective manner. To validate the efficacy of our method, we conducted ELISA experiments and high-throughput yeast surface display assays. Furthermore, x-ray crystallography was employed to verify the results, thereby recapitulating through the method of N-linked glycans a coarse-grained mapping of the epitope.


Asunto(s)
Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento , Humanos , Epítopos/química , Mapeo Epitopo/métodos , Ensayos Analíticos de Alto Rendimiento/métodos
11.
Int J Mol Sci ; 24(11)2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37298671

RESUMEN

Protein-based biostimulants (PBBs) have a positive effect on plant development, although the biological background for this effect is not well understood. Here, hydrolyzed wheat gluten (HWG) and potato protein film (PF) in two levels (1 and 2 g/kg soil) and in two different soils (low and high nutrient; LNC and HNC) were used as PBBs. The effect of these PBBs on agronomic traits, sugars, protein, and peptides, as well as metabolic processes, were evaluated on sugar beet in comparison with no treatment (control) and treatment with nutrient solution (NS). The results showed a significant growth enhancement of the plants using HWG and PF across the two soils. Sucrose and total sugar content in the roots were high in NS-treated plants and correlated to root growth in HNC soil. Traits related to protein composition, including nitrogen, peptide, and RuBisCO contents, were enhanced in PBB-treated plants (mostly for HWG and PF at 2 g/kg soil) by 100% and >250% in HNC and LNC, respectively, compared to control. The transcriptomic analysis revealed that genes associated with ribosomes and photosynthesis were upregulated in the leaf samples of plants treated with either HWG or PP compared to the control. Furthermore, genes associated with the biosynthesis of secondary metabolites were largely down-regulated in root samples of HWG or PF-treated plants. Thus, the PBBs enhanced protein-related traits in the plants through a higher transcription rate of genes related to protein- and photosynthesis, which resulted in increased plant growth, especially when added in certain amounts (2 g/kg soil). However, sucrose accumulation in the roots of sugar beet seemed to be related to the easy availability of nitrogen.


Asunto(s)
Beta vulgaris , Beta vulgaris/metabolismo , Nitrógeno/metabolismo , Desarrollo de la Planta , Suelo , Sacarosa/metabolismo , Raíces de Plantas/metabolismo
12.
ACS Omega ; 8(23): 20342-20351, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37323394

RESUMEN

Proteins are promising precursors to be used in production of sustainable materials with properties resembling plastics, although protein modification or functionalization is often required to obtain suitable product characteristics. Here, effects of protein modification were evaluated by crosslinking behavior using high-performance liquid chromatography (HPLC), secondary structure using infrared spectroscopy (IR), liquid imbibition and uptake, and tensile properties of six crambe protein isolates modified in solution before thermal pressing. The results showed that a basic pH (10), especially when combined with the commonly used, although moderately toxic, crosslinking agent glutaraldehyde (GA), resulted in a decrease in crosslinking in unpressed samples, as compared to acidic pH (4) samples. After pressing, a more crosslinked protein matrix with an increase in ß-sheets was obtained in basic samples compared to acidic samples, mainly due to the formation of disulfide bonds, which led to an increase in tensile strength, and liquid uptake with less material resolved. A treatment of pH 10 + GA, combined either with a heat or citric acid treatment, did not increase crosslinking or improve the properties in pressed samples, as compared to pH 4 samples. Fenton treatment at pH 7.5 resulted in a similar amount of crosslinking as the pH 10 + GA treatment, although with a higher degree of peptide/irreversible bonds. The strong bond formation resulted in lack of opportunities to disintegrate the protein network by all extraction solutions tested (even for 6 M urea + 1% sodium dodecyl sulfate + 1% dithiothreitol). Thus, the highest crosslinking and best properties of the material produced from crambe protein isolates were obtained by pH 10 + GA and pH 7.5 + Fenton, where Fenton is a greener and more sustainable solution than GA. Therefore, chemical modification of crambe protein isolates is effecting both sustainability and crosslinking behavior, which might have an effect on product suitability.

13.
PLoS One ; 18(5): e0285565, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37163567

RESUMEN

Spring wheat is an economically important crop for Scandinavia and its cultivation is likely to be affected by climate change. The current study focused on wheat yield in recent years, during which climate change-related yield fluctuations have been more pronounced than previously observed. Here, effects of the environment, together with the genotype and fungicide treatment was evaluated. Spring wheat multi-location trials conducted at five locations between 2016 and 2020 were used to understand effects of the climate and fungicides on wheat yield. The results showed that the environment has a strong effect on grain yield, followed by the genotype effect. Moreover, temperature has a stronger (negative) impact than rainfall on grain yield and crop growing duration. Despite a low rainfall in the South compared to the North, the southern production region (PR) 2 had the highest yield performance, indicating the optimal environment for spring wheat production. The fungicide treatment effect was significant in 2016, 2017 and 2020. Overall, yield reduction due to fungal diseases ranged from 0.98 (2018) to 13.3% (2017) and this reduction was higher with a higher yield. Overall yield reduction due to fungal diseases was greater in the South (8.9%) than the North zone (5.3%). The genotypes with higher tolerance to diseases included G4 (KWS Alderon), G14 (WPB 09SW025-11), and G23 (SW 11360) in 2016; G24 (SW 11360), G25 (Millie), and G19 (SEC 526-07-2) in 2017; and G19 (WPB 13SW976-01), G12 (Levels), and G18 (SW 141011) in 2020. The combined best performing genotypes for disease tolerance and stable and higher yield in different locations were KWS Alderon, SEC 526-07-2, and WPB 13SW976-01 with fungicide treatment and WPB Avonmore, SEC 526-07-2, SW 131323 without fungicide treatment. We conclude that the best performing genotypes could be recommended for Scandinavian climatic conditions with or without fungicide application and that developing heat-tolerant varieties for Scandinavian countries should be prioritized.


Asunto(s)
Interacción Gen-Ambiente , Micosis , Triticum/genética , Suecia , Grano Comestible/genética , Genotipo , Respuesta al Choque Térmico
14.
Antioxidants (Basel) ; 12(4)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37107240

RESUMEN

Polyphenols are plant-based compounds famous for their positive impact on both human health and the quality of food products. The benefits of polyphenols are related to reducing cardiovascular diseases, cholesterol management, cancers, and neurological disorders in humans and increasing the shelf life, management of oxidation, and anti-microbial activity in food products. The bioavailability and bio-accessibility of polyphenols are of the highest importance to secure their impact on human and food health. This paper summarizes the current state-of-the-art approaches on how polyphenols can be made more accessible in food products to contribute to human health. For example, by using food processing methods including various technologies, such as chemical and biotechnological treatments. Food matrix design and simulation procedures, in combination with encapsulation of fractionated polyphenols utilizing enzymatic and fermentation methodology, may be the future technologies to tailor specific food products with the ability to ensure polyphenol release and availability in the most suitable parts of the human body (bowl, intestine, etc.). The development of such new procedures for utilizing polyphenols, combining novel methodologies with traditional food processing technologies, has the potential to contribute enormous benefits to the food industry and health sector, not only reducing food waste and food-borne illnesses but also to sustain human health.

15.
Heliyon ; 9(2): e13754, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36852076

RESUMEN

Internationally, there is a growing body of evidence which shows that newly graduated teachers do not feel prepared to teach the increasingly diverse student body in contemporary classrooms. However, to date, we have limited understanding of the ways in which teacher educators work with preservice teachers to enhance their knowledge about diversity and how to address the diverse needs of students in their classrooms. To further understand teacher educators' pedagogical decision making in the context of preparing preservice teachers for diverse classrooms, a way of capturing epistemic thinking in this space is required. The current study used the Epistemic Reflexivity Survey for Teacher Educators (ERS-TE) to explore the relationships between teacher educators' Epistemic Aims, Reliable epistemic processes (REPs), Criteria for Knowledge (Epistemic Ideals), Reflexivity (decision making) and Teaching Practices. Two hundred and eighty-six teacher educators across Australia and New Zealand completed the survey. Results indicated that epistemic aims related to understanding critical connections predicted engagement with reliable epistemic thinking processes, reflexivity, and teaching practices related to critical thinking and social justice. Findings are discussed in terms of implications for teacher educators' work with preservice teachers with respect to teaching about, to and for diversity.

16.
Polymers (Basel) ; 15(2)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36679232

RESUMEN

Keratin is a largely available protein that can be obtained from the ca. 3 million tons of feathers that the European poultry industry produces as a side-stream. Here, the functionalization of keratin from poultry feathers was evaluated using a one- versus two-stage process using two functionalization agents (succinic anhydride-SA and ethylene dianhydride-EDTAD). The functionalization resulted in the keratin having improved liquid swelling capacities, reaching up to 400%, 300%, and 85% increase in water, saline, and blood, respectively, compared to non-functionalized keratin. The highest swelling was obtained for samples functionalized with EDTAD (one-stage process), while the highest saline uptake was noted for samples processed with 25 wt% SA (two-stage process). Swelling kinetics modeling indicated that the water uptake by the functionalized samples takes place in two steps, and the EDTAD samples showed the highest diffusivity. It is demonstrated that the one-stage functionalization of keratin utilizing EDTAD results in better performance than two-stages, which allows for resource-saving and, thereby, protecting the environment. The results show some potential for the keratin to be utilized as liquid absorbent materials in water, saline, and blood uptake applications. Using keratin from side-streams is an advantage from a sustainability perspective over biomacromolecules that need to be extracted from virgin biomass.

17.
Plant Dis ; 107(3): 720-729, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35900348

RESUMEN

Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici Eriks. & E. Henn, is the most devastating fungal disease of bread wheat. Here, a wheat-rye multiple disomic substitution line, SLU126 4R (4D), 5R (5D), and 6R (7D), possessing resistance against 25 races of P. striiformis f. sp. tritici, was used and crossed with Chinese Spring ph1b to induce homeologous recombination to produce introgressions with a reduced rye chromosome segment. Seedling assays confirmed that the stripe rust resistance from SLU126 was retained over multiple generations. Through genotyping-by-sequencing (GBS) platforms and aligning the putative GBS-single-nucleotide polymorphism (SNPs) to the full-length annotated rye nucleotide-binding leucine-rich repeat (NLR) genes in the parental lines (CS ph1b, SLU126, CSA, and SLU820), we identified the physical position of 26, 13, and 9 NLR genes on chromosomes 6R, 4R, and 5R, respectively. The physical positions of 25 NLR genes on chromosome 6R were identified from 568,460,437 bp to 879,958,268 bp in the 6RL chromosome segment. Based on these NLR positions on the 6RL chromosome segment, the three linked SNPs (868,123,650 to 873,285,112 bp) were validated through kompetitive allele-specific PCR (KASP) assays in SLU126 and resistance plants in the family 29-N3-5. Using these KASP markers, we identified a small piece of the rye translocation (i.e., as a possible 6DS.6DL.6RL.6DL) containing the stripe resistance gene, temporary designated YrSLU, within the 6RL segment. This new stripe rust resistance gene provides an additional asset for wheat improvement to mitigate yield losses caused by stripe rust.


Asunto(s)
Basidiomycota , Triticum , Triticum/genética , Triticum/microbiología , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/genética , Basidiomycota/genética , Alelos , Translocación Genética , Puccinia
18.
Front Microbiol ; 13: 999876, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36569062

RESUMEN

Soda lakes are unique poly-extreme environments with high alkalinity and salinity that support diverse microbial communities despite their extreme nature. In this study, prokaryotic and eukaryotic microbial diversity in samples of the three soda lakes, Lake Abijata, Lake Chitu and Lake Shala in the East African Rift Valley, were determined using amplicon sequencing. Culture-independent analysis showed higher diversity of prokaryotic and eukaryotic microbial communities in all three soda lakes than previously reported. A total of 3,603 prokaryotic and 898 eukaryotic operational taxonomic units (OTUs) were found through culture-independent amplicon sequencing, whereas only 134 bacterial OTUs, which correspond to 3%, were obtained by enrichment cultures. This shows that only a fraction of the microorganisms from these habitats can be cultured under laboratory conditions. Of the three soda lakes, samples from Lake Chitu showed the highest prokaryotic diversity, while samples from Lake Shala showed the lowest diversity. Pseudomonadota (Halomonas), Bacillota (Bacillus, Clostridia), Bacteroidota (Bacteroides), Euryarchaeota (Thermoplasmata, Thermococci, Methanomicrobia, Halobacter), and Nanoarchaeota (Woesearchaeia) were the most common prokaryotic microbes in the three soda lakes. A high diversity of eukaryotic organisms were identified, primarily represented by Ascomycota and Basidiomycota. Compared to the other two lakes, a higher number of eukaryotic OTUs were found in Lake Abijata. The present study showed that these unique habitats harbour diverse microbial genetic resources with possible use in biotechnological applications, which should be further investigated by functional metagenomics.

19.
Front Microbiol ; 13: 1059061, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36569080

RESUMEN

Extremophiles provide a one-of-a-kind source of enzymes with properties that allow them to endure the rigorous industrial conversion of lignocellulose biomass into fermentable sugars. However, the fact that most of these organisms fail to grow under typical culture conditions limits the accessibility to these enzymes. In this study, we employed a functional metagenomics approach to identify carbohydrate-degrading enzymes from Ethiopian soda lakes, which are extreme environments harboring a high microbial diversity. Out of 21,000 clones screened for the five carbohydrate hydrolyzing enzymes, 408 clones were found positive. Cellulase and amylase, gave high hit ratio of 1:75 and 1:280, respectively. A total of 378 genes involved in the degradation of complex carbohydrates were identified by combining high-throughput sequencing of 22 selected clones and bioinformatics analysis using a customized workflow. Around 41% of the annotated genes belonged to the Glycoside Hydrolases (GH). Multiple GHs were identified, indicating the potential to discover novel CAZymes useful for the enzymatic degradation of lignocellulose biomass from the Ethiopian soda Lakes. More than 73% of the annotated GH genes were linked to bacterial origins, with Halomonas as the most likely source. Biochemical characterization of the three enzymes from the selected clones (amylase, cellulase, and pectinase) showed that they are active in elevated temperatures, high pH, and high salt concentrations. These properties strongly indicate that the evaluated enzymes have the potential to be used for applications in various industrial processes, particularly in biorefinery for lignocellulose biomass conversion.

20.
Biomacromolecules ; 23(12): 5116-5126, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36349363

RESUMEN

Glycerol-plasticized wheat gluten was explored for producing soft high-density biofoams using dry upscalable extrusion (avoiding purposely added water). The largest pore size was obtained when using the food grade ammonium bicarbonate (ABC) as blowing agent, also resulting in the highest saline liquid uptake. Foams were, however, also obtained without adding a blowing agent, possibly due to a rapid moisture uptake by the dried protein powder when fed to the extruder. ABC's low decomposition temperature enabled extrusion of the material at a temperature as low as 70 °C, well below the protein aggregation temperature. Sodium bicarbonate (SBC), the most common food-grade blowing agent, did not yield the same high foam qualities. SBC's alkalinity, and the need to use a higher processing temperature (120 °C), resulted in high protein cross-linking and aggregation. The results show the potential of an energy-efficient and industrially upscalable low-temperature foam extrusion process for competitive production of sustainable biofoams using inexpensive and readily available protein obtained from industrial biomass (wheat gluten).


Asunto(s)
Glútenes , Triticum , Glútenes/metabolismo , Temperatura , Calor , Glicerol/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...