Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 13(2): 536-553, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35126986

RESUMEN

Unlike misfolding in neurodegenerative diseases, aggregation of functional amyloids involved in bacterial biofilm, e.g. CsgA (E. coli) and FapC (Pseudomonas), is carefully regulated. However, it is unclear whether functional aggregation is inhibited by chaperones targeting pathological misfolding and if so by what mechanism. Here we analyze how four entirely different human chaperones or protein modulators (transthyretin, S100A9, Bri2 BRICHOS and DNAJB6) and bacterial CsgC affect CsgA and FapC fibrillation. CsgA is more susceptible to inhibition than FapC and the chaperones vary considerably in the efficiency of their inhibition. However, mechanistic analysis reveals that all predominantly target primary nucleation rather than elongation or secondary nucleation, while stoichiometric considerations suggest that DNAJB6 and CsgC target nuclei rather than monomers. Inhibition efficiency broadly scales with the chaperones' affinity for monomeric CsgA and FapC. The chaperones tend to target the most aggregation-prone regions of CsgA, but do not display such tendencies towards the more complex FapC sequence. Importantly, the most efficient inhibitors (Bri2 BRICHOS and DNAJB6) significantly reduce bacterial biofilm formation. This commonality of chaperone action may reflect the simplicity of functional amyloid formation, driven largely by primary nucleation, as well as the ability of non-bacterial chaperones to deploy their proteostatic capacities across biological kingdoms.

2.
Biochem Biophys Res Commun ; 450(4): 1587-92, 2014 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-25034329

RESUMEN

Experimental tools to determine membrane topology of a protein are rather limited in higher eukaryotic organisms. Here, we report the use of glycosylatable GFP (gGFP) as a sensitive and versatile membrane topology reporter in mammalian cells. gGFP selectively loses its fluorescence upon N-linked glycosylation in the ER lumen. Thus, positive fluorescence signal assigns location of gGFP to the cytosol whereas no fluorescence signal and a glycosylated status of gGFP map the location of gGFP to the ER lumen. By using mammalian gGFP, the membrane topology of disease-associated membrane proteins, URG7, MRP6102, SP-C(Val) and SP-C(Leu) was confirmed. URG7 is partially targeted to the ER, and inserted in Cin form. MRP6102 and SP-C(Leu/Val) are inserted into the membrane in Cout form. A minor population of untargeted SP-C is removed by proteasome dependent quality control system.


Asunto(s)
Proteínas Fluorescentes Verdes/metabolismo , Animales , Células Cultivadas , Retículo Endoplásmico/metabolismo , Citometría de Flujo , Glicosilación , Humanos , Microscopía Fluorescente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...