Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
medRxiv ; 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37790477

RESUMEN

Background: The upper (URT) and lower (LRT) respiratory tract feature distinct environments and responses affecting microbial colonization but investigating the relationship between them is technically challenging. We aimed to identify relationships between taxa colonizing the URT and LRT and explore their relationship with development during childhood. Methods: We employed V4 16S rDNA sequencing to profile nasopharyngeal swabs and tracheal aspirates collected from 183 subjects between 20 weeks and 18 years of age. These samples were collected prior to elective procedures at the Children's Hospital of Philadelphia over the course of 20 weeks in 2020, from otherwise healthy subjects enrolled in a study investigating potential reservoirs of SARS-CoV-2. Findings: After extraction, sequencing, and quality control, we studied the remaining 124 nasopharyngeal swabs and 98 tracheal aspirates, including 85 subject-matched pairs of samples. V4 16S rDNA sequencing revealed that the nasopharynx is colonized by few, highly-abundant taxa, while the tracheal aspirates feature a diverse assembly of microbes. While no taxa co-occur in the URT and LRT of the same subject, clusters of microbiomes in the URT correlate with clusters of microbiomes in the LRT. The clusters identified in the URT correlate with subject age across childhood development. Interpretations: The correlation between clusters of taxa across sites may suggest a mutual influence from either a third site, such as the oropharynx, or host-extrinsic, environmental features. The identification of a pattern of upper respiratory microbiota development across the first 18 years of life suggests that the patterns observed in early childhood may extend beyond the early life window.

2.
Nat Microbiol ; 7(8): 1230-1238, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35817892

RESUMEN

Apicomplexan parasites secrete contents of the rhoptries, club-shaped organelles in the apical region, into host cells to permit their invasion and establishment of infection. The rhoptry secretory apparatus (RSA), which is critical for rhoptry secretion, was recently discovered in Toxoplasma and Cryptosporidium. It is unknown whether a similar molecular machinery exists in the malaria parasite Plasmodium. In this study, we use in situ cryo-electron tomography to investigate the rhoptry secretion system in P. falciparum merozoites. We identify the presence of an RSA at the cell apex and a morphologically distinct apical vesicle docking the tips of the two rhoptries to the RSA. We also discover two additional rhoptry organizations that lack the apical vesicle. Using subtomogram averaging, we reveal different conformations of the RSA structure corresponding to different rhoptry organizations. Our results highlight previously unknown steps in the process of rhoptry secretion and indicate a regulatory role for the conserved apical vesicle in host invasion by apicomplexan parasites.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Malaria Falciparum , Tomografía con Microscopio Electrónico , Interacciones Huésped-Parásitos , Humanos , Plasmodium falciparum , Proteínas Protozoarias/genética
3.
Infect Control Hosp Epidemiol ; 43(11): 1647-1655, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-34852866

RESUMEN

OBJECTIVE: To describe the cumulative seroprevalence of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) antibodies during the coronavirus disease 2019 (COVID-19) pandemic among employees of a large pediatric healthcare system. DESIGN, SETTING, AND PARTICIPANTS: Prospective observational cohort study open to adult employees at the Children's Hospital of Philadelphia, conducted April 20-December 17, 2020. METHODS: Employees were recruited starting with high-risk exposure groups, utilizing e-mails, flyers, and announcements at virtual town hall meetings. At baseline, 1 month, 2 months, and 6 months, participants reported occupational and community exposures and gave a blood sample for SARS-CoV-2 antibody measurement by enzyme-linked immunosorbent assays (ELISAs). A post hoc Cox proportional hazards regression model was performed to identify factors associated with increased risk for seropositivity. RESULTS: In total, 1,740 employees were enrolled. At 6 months, the cumulative seroprevalence was 5.3%, which was below estimated community point seroprevalence. Seroprevalence was 5.8% among employees who provided direct care and was 3.4% among employees who did not perform direct patient care. Most participants who were seropositive at baseline remained positive at follow-up assessments. In a post hoc analysis, direct patient care (hazard ratio [HR], 1.95; 95% confidence interval [CI], 1.03-3.68), Black race (HR, 2.70; 95% CI, 1.24-5.87), and exposure to a confirmed case in a nonhealthcare setting (HR, 4.32; 95% CI, 2.71-6.88) were associated with statistically significant increased risk for seropositivity. CONCLUSIONS: Employee SARS-CoV-2 seroprevalence rates remained below the point-prevalence rates of the surrounding community. Provision of direct patient care, Black race, and exposure to a confirmed case in a nonhealthcare setting conferred increased risk. These data can inform occupational protection measures to maximize protection of employees within the workplace during future COVID-19 waves or other epidemics.


Asunto(s)
COVID-19 , Virosis , Adulto , Humanos , Niño , Pandemias , COVID-19/epidemiología , SARS-CoV-2 , Estudios Seroepidemiológicos , Estudios Prospectivos , Virosis/epidemiología , Hospitales Pediátricos , Anticuerpos Antivirales , Personal de Salud
4.
medRxiv ; 2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-33330891

RESUMEN

SARS-CoV-2 infection is diagnosed through detection of specific viral nucleic acid or antigens from respiratory samples. These techniques are relatively expensive, slow, and susceptible to false-negative results. A rapid non-invasive method to detect infection would be highly advantageous. Compelling evidence from canine biosensors and studies of adults with COVID-19 suggests that infection reproducibly alters human volatile organic compounds (VOCs) profiles. To determine whether pediatric infection is associated with VOC changes, we enrolled SARS-CoV-2-infected and -uninfected children admitted to a major pediatric academic medical center. Breath samples were collected from children and analyzed through state-of-the-art GCxGC-ToFMS. Isolated features included 84 targeted VOCs. Candidate biomarkers that were correlated with infection status were subsequently validated in a second, independent cohort of children. We thus find that six volatile organic compounds are significantly and reproducibly increased in the breath of SARS-CoV-2-infected children. Three aldehydes (octanal, nonanal, and heptanal) drew special attention, as aldehydes are also elevated in the breath of adults with COVID-19. Together, these biomarkers demonstrate high accuracy for distinguishing pediatric SARS-CoV-2 infection and support the ongoing development of novel breath-based diagnostics.

6.
Pediatr Blood Cancer ; 67(11): e28693, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32885904

RESUMEN

There are no proven safe and effective therapies for children who develop life-threatening complications of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Convalescent plasma (CP) has demonstrated potential benefit in adults with SARS-CoV-2, but has theoretical risks.We present the first report of CP in children with life-threatening coronavirus disease 2019 (COVID-19), providing data on four pediatric patients with acute respiratory distress syndrome. We measured donor antibody levels and recipient antibody response prior to and following CP infusion. Infusion of CP was not associated with antibody-dependent enhancement (ADE) and did not suppress endogenous antibody response. We found CP was safe and possibly efficacious. Randomized pediatric trials are needed.


Asunto(s)
COVID-19/terapia , Síndrome de Dificultad Respiratoria/terapia , Adolescente , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/uso terapéutico , COVID-19/complicaciones , Humanos , Inmunización Pasiva/métodos , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Síndrome de Dificultad Respiratoria/etiología , SARS-CoV-2/inmunología , Índice de Severidad de la Enfermedad , Sueroterapia para COVID-19
7.
J Clin Invest ; 130(11): 5967-5975, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32730233

RESUMEN

BACKGROUNDInitial reports from the severe acute respiratory coronavirus 2 (SARS-CoV-2) pandemic described children as being less susceptible to coronavirus disease 2019 (COVID-19) than adults. Subsequently, a severe and novel pediatric disorder termed multisystem inflammatory syndrome in children (MIS-C) emerged. We report on unique hematologic and immunologic parameters that distinguish between COVID-19 and MIS-C and provide insight into pathophysiology.METHODSWe prospectively enrolled hospitalized patients with evidence of SARS-CoV-2 infection and classified them as having MIS-C or COVID-19. Patients with COVID-19 were classified as having either minimal or severe disease. Cytokine profiles, viral cycle thresholds (Cts), blood smears, and soluble C5b-9 values were analyzed with clinical data.RESULTSTwenty patients were enrolled (9 severe COVID-19, 5 minimal COVID-19, and 6 MIS-C). Five cytokines (IFN-γ, IL-10, IL-6, IL-8, and TNF-α) contributed to the analysis. TNF-α and IL-10 discriminated between patients with MIS-C and severe COVID-19. The presence of burr cells on blood smears, as well as Cts, differentiated between patients with severe COVID-19 and those with MIS-C.CONCLUSIONPediatric patients with SARS-CoV-2 are at risk for critical illness with severe COVID-19 and MIS-C. Cytokine profiling and examination of peripheral blood smears may distinguish between patients with MIS-C and those with severe COVID-19.FUNDINGFinancial support for this project was provided by CHOP Frontiers Program Immune Dysregulation Team; National Institute of Allergy and Infectious Diseases; National Cancer Institute; the Leukemia and Lymphoma Society; Cookies for Kids Cancer; Alex's Lemonade Stand Foundation for Childhood Cancer; Children's Oncology Group; Stand UP 2 Cancer; Team Connor; the Kate Amato Foundations; Burroughs Wellcome Fund CAMS; the Clinical Immunology Society; the American Academy of Allergy, Asthma, and Immunology; and the Institute for Translational Medicine and Therapeutics.


Asunto(s)
Betacoronavirus/metabolismo , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Infecciones por Coronavirus , Citocinas/sangre , Pandemias , Neumonía Viral , Síndrome de Respuesta Inflamatoria Sistémica , Adolescente , COVID-19 , Niño , Preescolar , Infecciones por Coronavirus/sangre , Infecciones por Coronavirus/epidemiología , Femenino , Humanos , Masculino , Neumonía Viral/sangre , Neumonía Viral/epidemiología , Estudios Prospectivos , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Síndrome de Respuesta Inflamatoria Sistémica/sangre , Síndrome de Respuesta Inflamatoria Sistémica/epidemiología
9.
Sci Rep ; 7(1): 8400, 2017 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-28827774

RESUMEN

The emergence of Plasmodium falciparum resistant to frontline therapeutics has prompted efforts to identify and validate agents with novel mechanisms of action. MEPicides represent a new class of antimalarials that inhibit enzymes of the methylerythritol phosphate (MEP) pathway of isoprenoid biosynthesis, including the clinically validated target, deoxyxylulose phosphate reductoisomerase (Dxr). Here we describe RCB-185, a lipophilic prodrug with nanomolar activity against asexual parasites. Growth of P. falciparum treated with RCB-185 was rescued by isoprenoid precursor supplementation, and treatment substantially reduced metabolite levels downstream of the Dxr enzyme. In addition, parasites that produced higher levels of the Dxr substrate were resistant to RCB-185. Notably, environmental isolates resistant to current therapies remained sensitive to RCB-185, the compound effectively treated sexually-committed parasites, and was both safe and efficacious in malaria-infected mice. Collectively, our data demonstrate that RCB-185 potently and selectively inhibits Dxr in P. falciparum, and represents a promising lead compound for further drug development.


Asunto(s)
Antimaláricos/farmacología , Inhibidores Enzimáticos/farmacología , Plasmodium falciparum/efectos de los fármacos , Profármacos/farmacología , Terpenos/antagonistas & inhibidores , Isomerasas Aldosa-Cetosa/antagonistas & inhibidores , Animales , Antimaláricos/administración & dosificación , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/administración & dosificación , Malaria Falciparum/tratamiento farmacológico , Ratones , Plasmodium falciparum/crecimiento & desarrollo , Profármacos/administración & dosificación , Resultado del Tratamiento
10.
Sci Rep ; 6: 36777, 2016 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-27857147

RESUMEN

The methylerythritol phosphate (MEP) pathway is an essential metabolic pathway found in malaria parasites, but absent in mammals, making it a highly attractive target for the discovery of novel and selective antimalarial therapies. Using high-throughput screening, we have identified 2-phenyl benzo[d]isothiazol-3(2H)-ones as species-selective inhibitors of Plasmodium spp. 2-C-methyl-D-erythritol-4-phosphate cytidyltransferase (IspD), the third catalytic enzyme of the MEP pathway. 2-Phenyl benzo[d]isothiazol-3(2H)-ones display nanomolar inhibitory activity against P. falciparum and P. vivax IspD and prevent the growth of P. falciparum in culture, with EC50 values below 400 nM. In silico modeling, along with enzymatic, genetic and crystallographic studies, have established a mechanism-of-action involving initial non-covalent recognition of inhibitors at the IspD binding site, followed by disulfide bond formation through attack of an active site cysteine residue on the benzo[d]isothiazol-3(2H)-one core. The species-selective inhibitory activity of these small molecules against Plasmodium spp. IspD and cultured parasites suggests they have potential as lead compounds in the pursuit of novel drugs to treat malaria.


Asunto(s)
Antimaláricos/farmacología , Benzotiazoles/farmacología , Citidililtransferasa de Colina-Fosfato/química , Malaria Falciparum/prevención & control , Plasmodium falciparum/efectos de los fármacos , Plasmodium vivax/efectos de los fármacos , Sitios de Unión , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Eritritol/análogos & derivados , Eritritol/química , Concentración 50 Inhibidora , Proteínas Recombinantes/química , Fosfatos de Azúcar/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...