Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ChemMedChem ; 19(6): e202300538, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38057137

RESUMEN

The lack of new antibiotics and the rapidly rising number of pathogens resistant to antibiotics pose a serious problem to mankind. In bacteria, the cell membrane provides the first line of defence to antibiotics by preventing them from reaching their molecular target. To overcome this entrance barrier, it has been suggested[1] that small Gold-Nanoparticles (AuNP) could possibly function as drug delivery systems for antibiotic ligands. Using actinonin-based ligands, we provide here proof-of-principle of AuNP functionalisation, the capability to bind and inhibit the target protein of the ligand, and the possibility to selectively release the antimicrobial payload. To this end, we successfully synthesised AuNP coated with thio-functionalised actinonin and a derivative. Interactions between 15N-enriched His-peptide deformylase 1-147 from E. coli (His-ecPDF 1-147) and compound-coated AuNP were investigated via 2D 1H-15N-HSQC NMR spectra proving the direct binding to His-ecPDF 1-147. More importantly by adding dithiothreitol (DTT), we show that the derivative is successfully released from AuNPs while still bound to His-ecPDF 1-147. Our findings indicate that AuNP-conjugated ligands can address and bind intracellular target proteins. The system introduced here presents a new delivery platform for antibiotics and allows for the easy optimisation of ligand coated AuNPs.


Asunto(s)
Amidohidrolasas , Oro , Nanopartículas del Metal , Oro/química , Escherichia coli , Ligandos , Nanopartículas del Metal/química , Antibacterianos/farmacología , Ácidos Hidroxámicos
2.
Inorg Chem ; 59(23): 17191-17199, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33180473

RESUMEN

While most Rh-N-heterocyclic carbene (NHC) complexes currently investigated in anticancer research contain a Rh(III) metal center, an increasing amount of research is focusing on the cytotoxic activity and mode of action of square-planar [RhCl(COD)(NHC)] (where COD = 1,5-cyclooctadiene) which contains a Rh(I) center. The enzyme thioredoxin reductase (TrxR) and the protein albumin have been proposed as potential targets, but the molecular processes taking place upon protein interaction remain elusive. Herein, we report the preparation of peptide-conjugated and its nonconjugated parent [RhCl(COD)(NHC)] complexes, an in-depth investigation of both their stability in solution, and a crystallographic study of protein interaction. The organorhodium compounds showed a rapid loss of the COD ligand and slow loss of the NHC ligand in aqueous solution. These ligand exchange reactions were reflected in studies on the interaction with hen egg white lysozyme (HEWL) as a model protein in single-crystal X-ray crystallographic investigations. Upon treatment of HEWL with an amino acid functionalized [RhCl(COD)(NHC)] complex, two distinct rhodium adducts were found initially after 7 d of incubation at His15 and after 4 weeks also at Lys33. In both cases, the COD and chlorido ligands had been substituted with aqua and/or hydroxido ligands. While the histidine (His) adduct also indicated a loss of the NHC ligand, the lysine (Lys) adduct retained the NHC core derived from the amino acid l-histidine. In either case, an octahedral coordination environment of the metal center indicates oxidation to Rh(III). This investigation gives the first insight on the interaction of Rh(I)(NHC) complexes and proteins at the molecular level.


Asunto(s)
Complejos de Coordinación/química , Compuestos Heterocíclicos/química , Metano/análogos & derivados , Muramidasa/química , Rodio/química , Complejos de Coordinación/síntesis química , Cristalografía por Rayos X , Metano/química , Modelos Moleculares , Estructura Molecular , Muramidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...