Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-492815

RESUMEN

The SARS-CoV-2 RNA-dependent RNA polymerase coordinates viral RNA synthesis as part of an assembly known as the replication-transcription complex (RTC)1. Accordingly, the RTC is a target for clinically approved antiviral nucleoside analogs, including remdesivir2. Faithful synthesis of viral RNAs by the RTC requires recognition of the correct nucleotide triphosphate (NTP) for incorporation into the nascent RNA. To be effective inhibitors, antiviral nucleoside analogs must compete with the natural NTPs for incorporation. How the SARS-CoV-2 RTC discriminates between the natural NTPs, and how antiviral nucleoside analogs compete, has not been discerned in detail. Here, we use cryo-electron microscopy to visualize the RTC bound to each of the natural NTPs in states poised for incorporation. Furthermore, we investigate the RTC with the active metabolite of remdesivir, remdesivir triphosphate (RDV-TP), highlighting the structural basis for the selective incorporation of RDV-TP over its natural counterpart ATP3,4. Our results elucidate the suite of interactions required for NTP recognition, informing the rational design of antivirals. Our analysis also yields insights into nucleotide recognition by the nsp12 NiRAN, an enigmatic catalytic domain essential for viral propagation5. The NiRAN selectively binds GTP, strengthening proposals for the role of this domain in the formation of the 5 RNA cap6.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-479840

RESUMEN

Genetic variation of SARS-CoV-2 has resulted in the emergence and rapid spread of multiple variants throughout the pandemic, of which Omicron is currently the predominant variant circulating worldwide. SARS-CoV-2 variants of concern or interest (VOC/VOI) have evidence of increased viral transmission, disease severity, or decreased effectiveness of vaccines and neutralizing antibodies. Remdesivir (RDV, VEKLURY(R)) is a nucleoside analog prodrug and the first FDA-approved antiviral treatment of COVID-19. Here we present a comprehensive antiviral activity assessment of RDV and its parent nucleoside, GS-441524, against 10 current and former SARS-CoV-2 VOC/VOI clinical isolates by nucleoprotein ELISA and plaque reduction assay. Delta and Omicron variants remained susceptible to RDV and GS-441524, with EC50 values 0.31 to 0.62-fold of those observed against the ancestral WA1 isolate. All other tested variants exhibited EC50 values ranging from 0.15 to 2.3-fold of the observed EC50 values against WA1. Analysis of nearly 6 million publicly available variant isolate sequences confirmed that Nsp12, the RNA-dependent RNA polymerase (RdRp) target of RDV and GS-441524, is highly conserved across variants with only 2 prevalent changes (P323L and G671S). Using recombinant viruses, both RDV and GS-441524 retained potency against all viruses containing frequent variant substitutions or their combination. Taken together, these results highlight the conserved nature of SARS-CoV-2 Nsp12 and provide evidence of sustained SARS-CoV-2 antiviral activity of RDV and GS-441524 across the tested variants. The observed pan-variant activity of RDV supports its continued use for the treatment of COVID-19 regardless of the SARS-CoV-2 variant.

3.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-464416

RESUMEN

Remdesivir (RDV) is a direct antiviral agent that is approved in several countries for the treatment of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). RDV exhibits broad-spectrum antiviral activity against positive-sense RNA viruses, e.g., SARS-CoV-2 and hepatitis C virus (HCV) and non-segmented negative-sense RNA viruses, e.g., Nipah virus (NiV), while several segmented negative-sense RNA viruses such as influenza (Flu) virus or Crimean-Congo hemorrhagic fever virus (CCHFV) are not sensitive to the drug. The reasons for this apparent pattern are unknown. Here, we expressed and purified representative RNA-dependent RNA polymerases (RdRp) and studied three biochemical parameters that have been associated with the inhibitory effects of RDV-triphosphate (TP): (i) selective incorporation of the nucleotide substrate RDV-TP, (ii) the effect of the incorporated RDV-monophosphate (MP) on primer extension, and (iii) the effect of RDV-MP in the template during incorporation of the complementary UTP. The results of this study revealed a strong correlation between antiviral effects and efficient incorporation of RDV-TP. Delayed chain-termination is heterogeneous and usually inefficient at higher NTP concentrations. In contrast, template-dependent inhibition of UTP incorporation opposite the embedded RDV-MP is seen with all polymerases. Molecular modeling suggests a steric conflict between the 1-cyano group of RDV-MP and conserved residues of RdRp motif F. We conclude that future efforts in the development of nucleotide analogues with a broader spectrum of antiviral activities should focus on improving rates of incorporation while capitalizing on the inhibitory effects of a bulky 1-modification.

4.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-460111

RESUMEN

The COVID-19 pandemic remains uncontrolled despite the rapid rollout of safe and effective SARS-CoV-2 vaccines, underscoring the need to develop highly effective antivirals. In the setting of waning immunity from infection and vaccination, breakthrough infections are becoming increasingly common and treatment options remain limited. Additionally, the emergence of SARS-CoV-2 variants of concern with their potential to escape therapeutic monoclonal antibodies emphasizes the need to develop second-generation oral antivirals targeting highly conserved viral proteins that can be rapidly deployed to outpatients. Here, we demonstrate the in vitro antiviral activity and in vivo therapeutic efficacy of GS-621763, an orally bioavailable prodrug of GS-441524, the parental nucleoside of remdesivir, which targets the highly conserved RNA-dependent RNA polymerase. GS-621763 exhibited significant antiviral activity in lung cell lines and two different human primary lung cell culture systems. The dose-proportional pharmacokinetic profile observed after oral administration of GS-621763 translated to dose-dependent antiviral activity in mice infected with SARS-CoV-2. Therapeutic GS-621763 significantly reduced viral load, lung pathology, and improved pulmonary function in COVID-19 mouse model. A direct comparison of GS-621763 with molnupiravir, an oral nucleoside analog antiviral currently in human clinical trial, proved both drugs to be similarly efficacious. These data demonstrate that therapy with oral prodrugs of remdesivir can significantly improve outcomes in SARS-CoV-2 infected mice. Thus, GS-621763 supports the exploration of GS-441524 oral prodrugs for the treatment of COVID-19 in humans.

5.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-436907

RESUMEN

There are, besides remdesivir, no approved antivirals for the treatment of SARS-CoV-2 infections. To aid in the search for antivirals against this virus, we explored the use of human tracheal airway epithelial cells (HtAEC) and human small airway epithelial cells (HsAEC) grown at the air/liquid interface (ALI). These cultures were infected at the apical side with one of two different SARS-CoV-2 isolates. Each virus was shown to replicate to high titers for extended periods of time (at least 8 days) and, in particular an isolate with the D614G in the spike (S) protein did so more efficiently at 35{degrees}C than 37{degrees}C. The effect of a selected panel of reference drugs that were added to the culture medium at the basolateral side of the system was explored. Remdesivir, GS-441524 (the parent nucleoside of remdesivir), EIDD-1931 (the parent nucleoside of molnupiravir) and IFN ({beta}1 and {lambda}1) all resulted in dose-dependent inhibition of viral RNA and infectious virus titers collected at the apical side. However, AT-511 (the free base form of AT-527 currently in clinical testing) failed to inhibit viral replication in these in vitro primary cell models. Together, these results provide a reference for further studies aimed at selecting SARS-CoV-2 inhibitors for further preclinical and clinical development.

6.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-278689

RESUMEN

A spike protein mutation D614G became dominant in SARS-CoV-2 during the COVID-19 pandemic. However, the mutational impact on viral spread and vaccine efficacy remains to be defined. Here we engineer the D614G mutation in the SARS-CoV-2 USA-WA1/2020 strain and characterize its effect on viral replication, pathogenesis, and antibody neutralization. The D614G mutation significantly enhances SARS-CoV-2 replication on human lung epithelial cells and primary human airway tissues, through an improved infectivity of virions with the spike receptor-binding domain in an "up" conformation for binding to ACE2 receptor. Hamsters infected with D614 or G614 variants developed similar levels of weight loss. However, the G614 virus produced higher infectious titers in the nasal washes and trachea, but not lungs, than the D614 virus. The hamster results confirm clinical evidence that the D614G mutation enhances viral loads in the upper respiratory tract of COVID-19 patients and may increases transmission. For antibody neutralization, sera from D614 virus-infected hamsters consistently exhibit higher neutralization titers against G614 virus than those against D614 virus, indicating that (i) the mutation may not reduce the ability of vaccines in clinical trials to protect against COVID-19 and (ii) therapeutic antibodies should be tested against the circulating G614 virus before clinical development. ImportanceUnderstanding the evolution of SARS-CoV-2 during the COVID-19 pandemic is essential for disease control and prevention. A spike protein mutation D614G emerged and became dominant soon after the pandemic started. By engineering the D614G mutation into an authentic wild-type SARS-CoV-2 strain, we demonstrate the importance of this mutation to (i) enhanced viral replication on human lung epithelial cells and primary human airway tissues, (ii) improved viral fitness in the upper airway of infected hamsters, and (iii) increased susceptibility to neutralization. Together with clinical findings, our work underscores the importance of this mutation in viral spread, vaccine efficacy, and antibody therapy.

7.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-165712

RESUMEN

A high-throughput platform would greatly facilitate COVID-19 serological testing and antiviral screening. Here we report a nanoluciferase SARS-CoV-2 (SARS-CoV-2-Nluc) that is genetically stable and replicates similarly to the wild-type virus in cell culture. We demonstrate that the optimized reporter virus assay in Vero E6 cells can be used to measure neutralizing antibody activity in patient sera and produces results in concordance with a plaque reduction neutralization test (PRNT). Compared with the low-throughput PRNT (3 days), the SARS-CoV-2-Nluc assay has substantially shorter turnaround time (5 hours) with a high-throughput testing capacity. Thus, the assay can be readily deployed for large-scale vaccine evaluation and neutralizing antibody testing in humans. Additionally, we developed a high-throughput antiviral assay using SARS-CoV-2-Nluc infection of A549 cells expressing human ACE2 receptor (A549-hACE2). When tested against this reporter virus, remdesivir exhibited substantially more potent activity in A549-hACE2 cells compared to Vero E6 cells (EC50 0.115 vs 1.28 M), while this difference was not observed for chloroquine (EC50 1.32 vs 3.52 M), underscoring the importance of selecting appropriate cells for antiviral testing. Using the optimized SARS-CoV-2-Nluc assay, we evaluated a collection of approved and investigational antivirals and other anti-infective drugs. Nelfinavir, rupintrivir, and cobicistat were identified as the most selective inhibitors of SARS-CoV-2-Nluc (EC50 0.77 to 2.74 M). In contrast, most of the clinically approved antivirals, including tenofovir alafenamide, emtricitabine, sofosbuvir, ledipasvir, and velpatasvir were inactive at concentrations up to 10 M. Collectively, this high-throughput platform represents a reliable tool for rapid neutralization testing and antiviral screening for SARS-CoV-2.

8.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-064279

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 2019 as the causative agent of the novel pandemic viral disease COVID-19. With no approved therapies, this pandemic illustrates the urgent need for safe, broad-spectrum antiviral countermeasures against SARS-CoV-2 and future emerging CoVs. We report that remdesivir (RDV), a monophosphoramidate prodrug of an adenosine analog, potently inhibits SARS-CoV-2 replication in human lung cells and primary human airway epithelial cultures (EC50 = 0.01 M). Weaker activity was observed in Vero E6 cells (EC50 = 1.65 M) due to their low capacity to metabolize RDV. To rapidly evaluate in vivo efficacy, we engineered a chimeric SARS-CoV encoding the viral target of RDV, the RNA-dependent RNA polymerase, of SARS-CoV-2. In mice infected with chimeric virus, therapeutic RDV administration diminished lung viral load and improved pulmonary function as compared to vehicle treated animals. These data provide evidence that RDV is potently active against SARS-CoV-2 in vitro and in vivo, supporting its further clinical testing for treatment of COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...