Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genome Biol Evol ; 15(3)2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36757383

RESUMEN

Euphorbia peplus (petty spurge) is a small, fast-growing plant that is native to Eurasia and has become a naturalized weed in North America and Australia. Euphorbia peplus is not only medicinally valuable, serving as a source for the skin cancer drug ingenol mebutate, but also has great potential as a model for latex production owing to its small size, ease of manipulation in the laboratory, and rapid reproductive cycle. To help establish E. peplus as a new model, we generated a 267.2-Mb Hi-C-anchored PacBio HiFi nuclear genome assembly with a BUSCO score of 98.5%, a genome annotation based on RNA-seq data from six organs, and publicly accessible tools including a genome browser and an interactive organ-specific expression atlas. Chromosome number is highly variable across Euphorbia species. Using a comparative analysis of our newly sequenced E. peplus genome with other Euphorbiaceae genomes, we show that variation in Euphorbia chromosome number between E. peplus and Euphorbia lathyris is likely due to fragmentation and rearrangement rather than chromosomal duplication followed by diploidization of the duplicated sequence. Moreover, we found that the E. peplus genome is relatively compact compared with related members of the genus in part due to restricted expansion of the Ty3 transposon family. Finally, we identify a large gene cluster that contains many previously identified enzymes in the putative ingenol mebutate biosynthesis pathway, along with additional gene candidates for this biosynthetic pathway. The genomic resources we have created for E. peplus will help advance research on latex production and ingenol mebutate biosynthesis in the commercially important Euphorbiaceae family.


Asunto(s)
Euphorbiaceae , Látex , Tamaño del Genoma , Cromosomas
2.
Curr Opin Plant Biol ; 64: 102096, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34461600

RESUMEN

Latex-containing cells called laticifers are present in at least 41 flowering plant families and are thought to have convergently evolved at least 12 times. These cells are known to function in defense, but little is known about the molecular genetic mechanisms of their development. The expansion of laticifers into their distinctive tube shape can occur through two distinct mechanisms, cell fusion and intrusive growth. The mechanism and extent of intrusive laticifer growth are still being investigated. Hormonal regulation by jasmonic acid and ethylene is important for both laticifer differentiation and latex biosynthesis. Current evidence suggests that laticifers can be specified independently of latex production, but extensive latex production requires specified laticifers. Laticifers are an emerging system for studying the intersection of cell identity specification and specialized metabolism.


Asunto(s)
Látex
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...