Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Cell Biol ; 44(9): 345-357, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39133101

RESUMEN

LSG1 is a conserved GTPase involved in ribosome assembly. It is required for the eviction of the nuclear export adapter NMD3 from the pre-60S subunit in the cytoplasm. In human cells, LSG1 has also been shown to interact with vesicle-associated membrane protein-associated proteins (VAPs) that are found primarily on the endoplasmic reticulum. VAPs interact with a large host of proteins which contain FFAT motifs (two phenylalanines (FF) in an acidic tract) and are involved in many cellular functions including membrane traffic and regulation of lipid transport. Here, we show that human LSG1 binds to VAPs via a noncanonical FFAT-like motif. Deletion of this motif specifically disrupts the localization of LSG1 to the ER, without perturbing LSG1-dependent recycling of NMD3 in cells or modulation of LSG1 GTPase activity in vitro.


Asunto(s)
Retículo Endoplásmico , GTP Fosfohidrolasas , Humanos , Secuencias de Aminoácidos , Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/genética , Células HEK293 , Células HeLa , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Unión Proteica , Ribosomas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética
2.
bioRxiv ; 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37961559

RESUMEN

Assembly of functional ribosomal subunits and successfully delivering them to the translating pool is a prerequisite for protein synthesis and cell growth. In S. cerevisiae, the ribosome assembly factor Reh1 binds to pre-60S subunits at a late stage during their cytoplasmic maturation. Previous work shows that the C-terminus of Reh1 inserts into the polypeptide exit tunnel (PET) of the pre-60S subunit. Unlike canonical assembly factors, which associate exclusively with pre-60S subunits, we observed that Reh1 sediments with polysomes in addition to free 60S subunits. We therefore investigated the intriguing possibility that Reh1 remains associated with 60S subunits after the release of the anti-association factor Tif6 and after subunit joining. Here, we show that Reh1-bound nascent 60S subunits associate with 40S subunits to form actively translating ribosomes. Using selective ribosome profiling, we found that Reh1-bound ribosomes populate open reading frames near start codons. Reh1-bound ribosomes are also strongly enriched for initiator tRNA, indicating they are associated with early elongation events. Using single particle cryo-electron microscopy to image cycloheximide-arrested Reh1-bound 80S ribosomes, we found that Reh1-bound 80S contain A site peptidyl tRNA, P site tRNA and eIF5A indicating that Reh1 does not dissociate from 60S until early stages of translation elongation. We propose that Reh1 is displaced by the elongating peptide chain. These results identify Reh1 as the last assembly factor released from the nascent 60S subunit during its pioneer round of translation.

3.
Nat Struct Mol Biol ; 30(1): 91-98, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36536102

RESUMEN

RNA modifications are widespread in biology and abundant in ribosomal RNA. However, the importance of these modifications is not well understood. We show that methylation of a single nucleotide, in the catalytic center of the large subunit, gates ribosome assembly. Massively parallel mutational scanning of the essential nuclear GTPase Nog2 identified important interactions with rRNA, particularly with the 2'-O-methylated A-site base Gm2922. We found that methylation of G2922 is needed for assembly and efficient nuclear export of the large subunit. Critically, we identified single amino acid changes in Nog2 that completely bypass dependence on G2922 methylation and used cryoelectron microscopy to directly visualize how methylation flips Gm2922 into the active site channel of Nog2. This work demonstrates that a single RNA modification is a critical checkpoint in ribosome biogenesis, suggesting that such modifications can play an important role in regulation and assembly of macromolecular machines.


Asunto(s)
ARN Ribosómico , Ribosomas , ARN Ribosómico/metabolismo , Metilación , Microscopía por Crioelectrón , Ribosomas/metabolismo , Núcleo Celular/metabolismo
4.
Methods Enzymol ; 673: 77-101, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35965019

RESUMEN

The RNA helicase Dhr1 from S. cerevisiae is an essential enzyme required for the assembly of the cytosolic small ribosomal subunit (SSU). A critical feature of the SSU is the central pseudoknot, an RNA fold that organizes the overall architecture of the subunit and connects all four domains of the 18S ribosomal RNA (rRNA). The initial folding of rRNA is guided, in part, by the U3 small nucleolar RNA, which base-pairs with the pre-rRNA in such a way as to preclude premature formation of the central pseudoknot. Thus, the essential role of Dhr1 is the unwinding of U3 from the pre-rRNA to allow folding of the central pseudoknot. Enzymes of the DEAH/RNA helicase A-like (RHA) family, to which Dhr1 belongs, are involved in splicing and ribosome biogenesis. They typically unwind RNA duplexes by translocation along a single strand of RNA in a 3' to 5' direction, driven by ATP hydrolysis. The substrate specificity of these enzymes requires tight regulation of their activity, by restricting access to their substrates, requiring adaptors to recruit them to their substrates and mechanisms of inhibiting and activating their activity. Purified Dhr1 is an active RNA-dependent ATPase with specific unwinding activity. Here, we provide detailed protocols for its purification and assays for its ATPase and unwinding activities.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , ARN Helicasas , Precursores del ARN/química , ARN Ribosómico 18S/química , ARN Ribosómico 18S/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
5.
RNA ; 28(3): 371-389, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34934010

RESUMEN

The two subunits of the eukaryotic ribosome are produced through quasi-independent pathways involving the hierarchical actions of numerous trans-acting biogenesis factors and the incorporation of ribosomal proteins. The factors work together to shape the nascent subunits through a series of intermediate states into their functional architectures. One of the earliest intermediates of the small subunit (SSU or 40S) is the SSU processome which is subsequently transformed into the pre-40S intermediate. This transformation is, in part, facilitated by the binding of the methyltransferase Bud23. How Bud23 is released from the resultant pre-40S is not known. The ribosomal proteins Rps0, Rps2, and Rps21, termed the Rps0-cluster proteins, and several biogenesis factors bind the pre-40S around the time that Bud23 is released, suggesting that one or more of these factors could induce Bud23 release. Here, we systematically examined the requirement of these factors for the release of Bud23 from pre-40S particles. We found that the Rps0-cluster proteins are needed but not sufficient for Bud23 release. The atypical kinase/ATPase Rio2 shares a binding site with Bud23 and is thought to be recruited to pre-40S after the Rps0-cluster proteins. Depletion of Rio2 prevented the release of Bud23 from the pre-40S. More importantly, the addition of recombinant Rio2 to pre-40S particles affinity-purified from Rio2-depleted cells was sufficient for Bud23 release in vitro. The ability of Rio2 to displace Bud23 was independent of nucleotide hydrolysis. We propose a novel role for Rio2 in which its binding to the pre-40S actively displaces Bud23 from the pre-40S.


Asunto(s)
Metiltransferasas/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Metiltransferasas/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética
6.
Curr Genet ; 67(5): 729-738, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33844044

RESUMEN

The assembly of eukaryotic ribosomes follows an assembly line-like pathway in which numerous trans-acting biogenesis factors act on discrete pre-ribosomal intermediates to progressively shape the nascent subunits into their final functional architecture. Recent advances in cryo-electron microscopy have led to high-resolution structures of many pre-ribosomal intermediates; however, these static snapshots do not capture the dynamic transitions between these intermediates. To this end, molecular genetics can be leveraged to reveal how the biogenesis factors drive these dynamic transitions. Here, we briefly review how we recently used the deletion of BUD23 (bud23∆) to understand its role in the assembly of the ribosomal small subunit. The strong growth defect of bud23∆ mutants places a selective pressure on yeast cells for the occurrence of extragenic suppressors that define a network of functional interactions among biogenesis factors. Mapping these suppressing mutations to recently published structures of pre-ribosomal complexes allowed us to contextualize these suppressing mutations and derive a detailed model in which Bud23 promotes a critical transition event to facilitate folding of the central pseudoknot of the small subunit. This mini-review highlights how genetics can be used to understand the dynamics of complex structures, such as the maturing ribosome.


Asunto(s)
Biogénesis de Organelos , Ribosomas/genética , Ribosomas/fisiología , Saccharomyces cerevisiae/fisiología , Humanos , Metiltransferasas/genética , Metiltransferasas/fisiología , Modelos Moleculares , Ribosomas/ultraestructura , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología
7.
PLoS Genet ; 16(12): e1009215, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33306676

RESUMEN

The first metastable assembly intermediate of the eukaryotic ribosomal small subunit (SSU) is the SSU Processome, a large complex of RNA and protein factors that is thought to represent an early checkpoint in the assembly pathway. Transition of the SSU Processome towards continued maturation requires the removal of the U3 snoRNA and biogenesis factors as well as ribosomal RNA processing. While the factors that drive these events are largely known, how they do so is not. The methyltransferase Bud23 has a role during this transition, but its function, beyond the nonessential methylation of ribosomal RNA, is not characterized. Here, we have carried out a comprehensive genetic screen to understand Bud23 function. We identified 67 unique extragenic bud23Δ-suppressing mutations that mapped to genes encoding the SSU Processome factors DHR1, IMP4, UTP2 (NOP14), BMS1 and the SSU protein RPS28A. These factors form a physical interaction network that links the binding site of Bud23 to the U3 snoRNA and many of the amino acid substitutions weaken protein-protein and protein-RNA interactions. Importantly, this network links Bud23 to the essential GTPase Bms1, which acts late in the disassembly pathway, and the RNA helicase Dhr1, which catalyzes U3 snoRNA removal. Moreover, particles isolated from cells lacking Bud23 accumulated late SSU Processome factors and ribosomal RNA processing defects. We propose a model in which Bud23 dissociates factors surrounding its binding site to promote SSU Processome progression.


Asunto(s)
Metiltransferasas/metabolismo , Subunidades Ribosómicas Pequeñas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Metiltransferasas/genética , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , ARN Nucleolar Pequeño/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética
8.
RNA ; 25(11): 1549-1560, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31439809

RESUMEN

The ribosomal protein Rpl1 (uL1 in universal nomenclature) is essential in yeast and constitutes part of the L1 stalk which interacts with E site ligands on the ribosome. Structural studies of nascent pre-60S complexes in yeast have shown that a domain of the Crm1-dependent nuclear export adapter Nmd3, binds in the E site and interacts with Rpl1, inducing closure of the L1 stalk. Based on this observation, we decided to reinvestigate the role of the L1 stalk in nuclear export of pre-60S subunits despite previous work showing that Rpl1-deficient ribosomes are exported from the nucleus and engage in translation. Large cargoes, such as ribosomal subunits, require multiple export factors to facilitate their transport through the nuclear pore complex. Here, we show that pre-60S subunits lacking Rpl1 or truncated for the RNA of the L1 stalk are exported inefficiently. Surprisingly, this is not due to a measurable defect in the recruitment of Nmd3 but appears to result from inefficient recruitment of the Mex67-Mtr2 heterodimer.


Asunto(s)
Transporte Activo de Núcleo Celular , Subunidades Ribosómicas Grandes/metabolismo , Saccharomyces cerevisiae/metabolismo , Núcleo Celular/metabolismo , Dimerización , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Mol Cell Biol ; 39(17)2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31182640

RESUMEN

Eukaryotic ribosome biogenesis requires the action of approximately 200 trans-acting factors and the incorporation of 79 ribosomal proteins (RPs). The delivery of RPs to preribosomes is a major challenge for the cell because RPs are often highly basic and contain intrinsically disordered regions prone to nonspecific interactions and aggregation. To counteract this, eukaryotes developed dedicated chaperones for certain RPs that promote their solubility and expression, often by binding eukaryote-specific extensions of the RPs. Rps2 (uS5) is a universally conserved RP that assembles into nuclear pre-40S subunits. However, a chaperone for Rps2 had not been identified. Our laboratory previously characterized Tsr4 as a 40S biogenesis factor of unknown function. Here, we report that Tsr4 cotranslationally associates with Rps2. Rps2 harbors a eukaryote-specific N-terminal extension that is critical for its interaction with Tsr4. Moreover, Tsr4 perturbation resulted in decreased Rps2 levels and phenocopied Rps2 depletion. Despite Rps2 joining nuclear pre-40S particles, Tsr4 appears to be restricted to the cytoplasm. Thus, we conclude that Tsr4 is a cytoplasmic chaperone dedicated to Rps2.


Asunto(s)
Citoplasma/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Núcleo Celular/metabolismo , Regulación Fúngica de la Expresión Génica , Modelos Moleculares , Conformación Proteica , Proteínas Ribosómicas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/química
10.
Nat Commun ; 10(1): 958, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30814529

RESUMEN

The catalytic activity of the ribosome is mediated by RNA, yet proteins are essential for the function of the peptidyl transferase center (PTC). In eukaryotes, final assembly of the PTC occurs in the cytoplasm by insertion of the ribosomal protein Rpl10 (uL16). We determine structures of six intermediates in late nuclear and cytoplasmic maturation of the large subunit that reveal a tightly-choreographed sequence of protein and RNA rearrangements controlling the insertion of Rpl10. We also determine the structure of the biogenesis factor Yvh1 and show how it promotes assembly of the P stalk, a critical element for recruitment of GTPases that drive translation. Together, our structures provide a blueprint for final assembly of a functional ribosome.


Asunto(s)
Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Microscopía por Crioelectrón , Fosfatasas de Especificidad Dual/química , Fosfatasas de Especificidad Dual/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Peptidil Transferasas/química , Peptidil Transferasas/metabolismo , Conformación Proteica , ARN de Hongos/química , ARN de Hongos/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/química , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/ultraestructura , Ribosomas/ultraestructura , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura
11.
RNA ; 24(9): 1214-1228, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29925570

RESUMEN

The SSU processome (sometimes referred to as 90S) is an early stable intermediate in the small ribosomal subunit biogenesis pathway of eukaryotes. Progression of the SSU processome to a pre-40S particle requires a large-scale compaction of the RNA and release of many biogenesis factors. The U3 snoRNA is a primary component of the SSU processome and hybridizes to the rRNA at multiple locations to organize the structure of the SSU processome. Thus, release of U3 is a prerequisite for the transition to pre-40S. Our laboratory proposed that the RNA helicase Dhr1 plays a crucial role in the transition by unwinding U3 and that this activity is controlled by the SSU processome protein Utp14. How Utp14 times the activation of Dhr1 is an open question. Despite being highly conserved, Utp14 contains no recognizable domains, and how Utp14 interacts with the SSU processome is not well characterized. Here, we used UV crosslinking and analysis of cDNA (CRAC) and yeast two-hybrid interaction to characterize how Utp14 interacts with the preribosome. Moreover, proteomic analysis of SSU particles lacking Utp14 revealed that the presence of Utp14 is needed for efficient recruitment of the RNA exosome. Our analysis positions Utp14 to be uniquely poised to communicate the status of assembly of the SSU processome to Dhr1 and possibly to the exosome as well.


Asunto(s)
ARN Nucleolar Pequeño/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sitios de Unión , ARN Helicasas DEAD-box/metabolismo , Exosomas/metabolismo , Modelos Moleculares , Mutación , Proteómica/métodos , ARN de Hongos/metabolismo , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
12.
PLoS Genet ; 13(7): e1006894, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28715419

RESUMEN

Mutations in the ribosomal protein Rpl10 (uL16) can be drivers of T-cell acute lymphoblastic leukemia (T-ALL). We previously showed that these T-ALL mutations disrupt late cytoplasmic maturation of the 60S ribosomal subunit, blocking the release of the trans-acting factors Nmd3 and Tif6 in S. cerevisiae. Consequently, these mutant ribosomes do not efficiently pass the cytoplasmic quality control checkpoint and are blocked from engaging in translation. Here, we characterize suppressing mutations of the T-ALL-related rpl10-R98S mutant that bypass this block and show that the molecular defect of rpl10-R98S is a failure to release Nmd3 from the P site. Suppressing mutations were identified in Nmd3 and Tif6 that disrupted interactions between Nmd3 and the ribosome, or between Nmd3 and Tif6. Using an in vitro system with purified components, we found that Nmd3 inhibited Sdo1-stimulated Efl1 activity on mutant rpl10-R98S but not wild-type 60S subunits. Importantly, this inhibition was overcome in vitro by mutations in Nmd3 that suppressed rpl10-R98S in vivo. These results strongly support a model that Nmd3 must be dislodged from the P site to allow Sdo1 activation of Efl1, and define a failure in the removal of Nmd3 as the molecular defect of the T-ALL-associated rpl10-R98S mutation.


Asunto(s)
Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Supresión Genética , Alelos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/genética , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo
16.
EMBO J ; 36(7): 854-868, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28179369

RESUMEN

During ribosome biogenesis in eukaryotes, nascent subunits are exported to the cytoplasm in a functionally inactive state. 60S subunits are activated through a series of cytoplasmic maturation events. The last known events in the cytoplasm are the release of Tif6 by Efl1 and Sdo1 and the release of the export adapter, Nmd3, by the GTPase Lsg1. Here, we have used cryo-electron microscopy to determine the structure of the 60S subunit bound by Nmd3, Lsg1, and Tif6. We find that a central domain of Nmd3 mimics the translation elongation factor eIF5A, inserting into the E site of the ribosome and pulling the L1 stalk into a closed position. Additional domains occupy the P site and extend toward the sarcin-ricin loop to interact with Tif6. Nmd3 and Lsg1 together embrace helix 69 of the B2a intersubunit bridge, inducing base flipping that we suggest may activate the GTPase activity of Lsg1.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Biogénesis de Organelos , Proteínas de Unión al ARN/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Microscopía por Crioelectrón , Proteínas de Unión al GTP/química , Proteínas de Unión al ARN/química , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/ultraestructura , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química
17.
J Biol Chem ; 292(2): 585-596, 2017 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-27913624

RESUMEN

Eukaryotic ribosomes are composed of rRNAs and ribosomal proteins. Ribosomal proteins are translated in the cytoplasm and imported into the nucleus for assembly with the rRNAs. It has been shown that chaperones or karyopherins responsible for import can maintain the stability of ribosomal proteins by neutralizing unfavorable positive charges and thus facilitate their transports. Among 79 ribosomal proteins in yeast, only a few are identified with specific chaperones. Besides the classic role in maintaining protein stability, chaperones have additional roles in transport, chaperoning the assembly site, and dissociation of ribosomal proteins from karyopherins. Bcp1 has been shown to be necessary for the export of Mss4, a phosphatidylinositol 4-phosphate 5-kinase, and required for ribosome biogenesis. However, its specific function in ribosome biogenesis has not been described. Here, we show that Bcp1 dissociates Rpl23 from the karyopherins and associates with Rpl23 afterward. Loss of Bcp1 causes instability of Rpl23 and deficiency of 60S subunits. In summary, Bcp1 is a novel 60S biogenesis factor via chaperoning Rpl23 in the nucleus.


Asunto(s)
Núcleo Celular/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Núcleo Celular/genética , Chaperonas Moleculares/genética , Proteínas Nucleares/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Ribosómicas/genética , Subunidades Ribosómicas Grandes de Eucariotas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
18.
PLoS Pathog ; 12(10): e1005890, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27711183

RESUMEN

In eukaryotes, the degradation of cellular mRNAs is accomplished by Xrn1 and the cytoplasmic exosome. Because viral RNAs often lack canonical caps or poly-A tails, they can also be vulnerable to degradation by these host exonucleases. Yeast lack sophisticated mechanisms of innate and adaptive immunity, but do use RNA degradation as an antiviral defense mechanism. One model is that the RNA of yeast viruses is subject to degradation simply as a side effect of the intrinsic exonuclease activity of proteins involved in RNA metabolism. Contrary to this model, we find a highly refined, species-specific relationship between Xrn1p and the "L-A" totiviruses of different Saccharomyces yeast species. We show that the gene XRN1 has evolved rapidly under positive natural selection in Saccharomyces yeast, resulting in high levels of Xrn1p protein sequence divergence from one yeast species to the next. We also show that these sequence differences translate to differential interactions with the L-A virus, where Xrn1p from S. cerevisiae is most efficient at controlling the L-A virus that chronically infects S. cerevisiae, and Xrn1p from S. kudriavzevii is most efficient at controlling the L-A-like virus that we have discovered within S. kudriavzevii. All Xrn1p orthologs are equivalent in their interaction with another virus-like parasite, the Ty1 retrotransposon. Thus, the activity of Xrn1p against totiviruses is not simply an incidental consequence of the enzymatic activity of Xrn1p, but rather Xrn1p co-evolves with totiviruses to maintain its potent antiviral activity and limit viral propagation in Saccharomyces yeasts. Consistent with this, we demonstrated that Xrn1p physically interacts with the Gag protein encoded by the L-A virus, suggesting a host-virus interaction that is more complicated than just Xrn1p-mediated nucleolytic digestion of viral RNAs.


Asunto(s)
Exorribonucleasas/metabolismo , Interacciones Huésped-Parásitos/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/virología , Western Blotting , Inmunoprecipitación , Reacción en Cadena de la Polimerasa , ARN Viral/genética , Totivirus
19.
Mol Cell Biol ; 36(6): 965-78, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26729466

RESUMEN

In eukaryotic ribosome biogenesis, U3 snoRNA base pairs with the pre-rRNA to promote its processing. However, U3 must be removed to allow folding of the central pseudoknot, a key feature of the small subunit. Previously, we showed that the DEAH/RHA RNA helicase Dhr1 dislodges U3 from the pre-rRNA. DHR1 can be linked to UTP14, encoding an essential protein of the preribosome, through genetic interactions with the rRNA methyltransferase Bud23. Here, we report that Utp14 regulates Dhr1. Mutations within a discrete region of Utp14 reduced interaction with Dhr1 that correlated with reduced function of Utp14. These mutants accumulated Dhr1 and U3 in a pre-40S particle, mimicking a helicase-inactive Dhr1 mutant. This similarity in the phenotypes led us to propose that Utp14 activates Dhr1. Indeed, Utp14 formed a complex with Dhr1 and stimulated its unwinding activity in vitro. Moreover, the utp14 mutants that mimicked a catalytically inactive dhr1 mutant in vivo showed reduced stimulation of unwinding activity in vitro. Dhr1 binding to the preribosome was substantially reduced only when both Utp14 and Bud23 were depleted. Thus, Utp14 is bifunctional; together with Bud23, it is needed for stable interaction of Dhr1 with the preribosome, and Utp14 activates Dhr1 to dislodge U3.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Mapas de Interacción de Proteínas , ARN Nucleolar Pequeño/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , ARN Helicasas DEAD-box/genética , Eliminación de Gen , Metiltransferasas/genética , Metiltransferasas/metabolismo , Datos de Secuencia Molecular , Mutación , Conformación de Ácido Nucleico , ARN Nucleolar Pequeño/química , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Ribosomas/química , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia
20.
PLoS Genet ; 11(12): e1005732, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26656907

RESUMEN

Ribosome profiling produces snapshots of the locations of actively translating ribosomes on messenger RNAs. These snapshots can be used to make inferences about translation dynamics. Recent ribosome profiling studies in yeast, however, have reached contradictory conclusions regarding the average translation rate of each codon. Some experiments have used cycloheximide (CHX) to stabilize ribosomes before measuring their positions, and these studies all counterintuitively report a weak negative correlation between the translation rate of a codon and the abundance of its cognate tRNA. In contrast, some experiments performed without CHX report strong positive correlations. To explain this contradiction, we identify unexpected patterns in ribosome density downstream of each type of codon in experiments that use CHX. These patterns are evidence that elongation continues to occur in the presence of CHX but with dramatically altered codon-specific elongation rates. The measured positions of ribosomes in these experiments therefore do not reflect the amounts of time ribosomes spend at each position in vivo. These results suggest that conclusions from experiments in yeast using CHX may need reexamination. In particular, we show that in all such experiments, codons decoded by less abundant tRNAs were in fact being translated more slowly before the addition of CHX disrupted these dynamics.


Asunto(s)
Extensión de la Cadena Peptídica de Translación , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Codón , Cicloheximida/farmacología , Inhibidores de la Síntesis de la Proteína/farmacología , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Ribosomas/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA