Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 8(22)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37824216

RESUMEN

Aberrant fibroblast function plays a key role in the pathogenesis of idiopathic pulmonary fibrosis, a devastating disease of unrelenting extracellular matrix deposition in response to lung injury. Platelet-derived growth factor α-positive (Pdgfra+) lipofibroblasts (LipoFBs) are essential for lung injury response and maintenance of a functional alveolar stem cell niche. Little is known about the effects of lung injury on LipoFB function. Here, we used single-cell RNA-Seq (scRNA-Seq) technology and PdgfraGFP lineage tracing to generate a transcriptomic profile of Pdgfra+ fibroblasts in normal and injured mouse lungs 14 days after bleomycin exposure, generating 11 unique transcriptomic clusters that segregated according to treatment. While normal and injured LipoFBs shared a common gene signature, injured LipoFBs acquired fibrogenic pathway activity with an attenuation of lipogenic pathways. In a 3D organoid model, injured Pdgfra+ fibroblast-supported organoids were morphologically distinct from those cultured with normal fibroblasts, and scRNA-Seq analysis suggested distinct transcriptomic changes in alveolar epithelia supported by injured Pdgfra+ fibroblasts. In summary, while LipoFBs in injured lung have not migrated from their niche and retain their lipogenic identity, they acquire a potentially reversible fibrogenic profile, which may alter the kinetics of epithelial regeneration and potentially contribute to dysregulated repair, leading to fibrosis.


Asunto(s)
Fibrosis Pulmonar Idiopática , Lesión Pulmonar , Animales , Ratones , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/patología , Lesión Pulmonar/patología , Proteínas Tirosina Quinasas Receptoras/metabolismo
2.
Nat Med ; 23(3): 368-375, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28165478

RESUMEN

Antitumor T cells are subject to multiple mechanisms of negative regulation. Recent findings that innate lymphoid cells (ILCs) regulate adaptive T cell responses led us to examine the regulatory potential of ILCs in the context of cancer. We identified a unique ILC population that inhibits tumor-infiltrating lymphocytes (TILs) from high-grade serous tumors, defined their suppressive capacity in vitro, and performed a comprehensive analysis of their phenotype. Notably, the presence of this CD56+CD3- population in TIL cultures was associated with reduced T cell numbers, and further functional studies demonstrated that this population suppressed TIL expansion and altered TIL cytokine production. Transcriptome analysis and phenotypic characterization determined that regulatory CD56+CD3- cells exhibit low cytotoxic activity, produce IL-22, and have an expression profile that overlaps with those of natural killer (NK) cells and other ILCs. NKp46 was highly expressed by these cells, and addition of anti-NKp46 antibodies to TIL cultures abrogated the ability of these regulatory ILCs to suppress T cell expansion. Notably, the presence of these regulatory ILCs in TIL cultures corresponded with a striking reduction in the time to disease recurrence. These studies demonstrate that a previously uncharacterized ILC population regulates the activity and expansion of tumor-associated T cells.


Asunto(s)
Citocinas/inmunología , Inmunidad Innata/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos/inmunología , Neoplasias/inmunología , Linfocitos T/inmunología , Microambiente Tumoral/inmunología , Complejo CD3/metabolismo , Antígeno CD56/metabolismo , Proliferación Celular , Citometría de Flujo , Humanos , Tolerancia Inmunológica , Inmunoterapia , Interleucinas/inmunología , Células Asesinas Naturales/inmunología , Linfocitos/metabolismo , Linfocitos Infiltrantes de Tumor/metabolismo , Receptor 1 Gatillante de la Citotoxidad Natural/metabolismo , Neoplasias/terapia , Interleucina-22
3.
J Exp Med ; 210(7): 1419-31, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23797092

RESUMEN

The protein-tyrosine phosphatase Shp1 is expressed ubiquitously in hematopoietic cells and is generally viewed as a negative regulatory molecule. Mutations in Ptpn6, which encodes Shp1, result in widespread inflammation and premature death, known as the motheaten (me) phenotype. Previous studies identified Shp1 as a negative regulator of TCR signaling, but the severe systemic inflammation in me mice may have confounded our understanding of Shp1 function in T cell biology. To define the T cell­intrinsic role of Shp1, we characterized mice with a T cell­specific Shp1 deletion (Shp1fl/fl CD4-cre). Surprisingly, thymocyte selection and peripheral TCR sensitivity were unaltered in the absence of Shp1. Instead, Shp1(fl/fl) CD4-cre mice had increased frequencies of memory phenotype T cells that expressed elevated levels of CD44. Activation of Shp1-deficient CD4⁺ T cells also resulted in skewing to the Th2 lineage and increased IL-4 production. After IL-4 stimulation of Shp1- deficient T cells, Stat 6 activation was sustained, leading to enhanced Th2 skewing. Accordingly, we observed elevated serum IgE in the steady state. Blocking or genetic deletion of IL-4 in the absence of Shp1 resulted in a marked reduction of the CD44hi population. Therefore, Shp1 is an essential negative regulator of IL-4 signaling in T lymphocytes.


Asunto(s)
Homeostasis/inmunología , Interleucina-4/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/inmunología , Transducción de Señal/inmunología , Linfocitos T/enzimología , Linfocitos T/inmunología , Animales , Memoria Inmunológica , Interleucina-4/deficiencia , Interleucina-4/genética , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Tirosina Fosfatasa no Receptora Tipo 6/deficiencia , Proteína Tirosina Fosfatasa no Receptora Tipo 6/genética , Células Th2/enzimología , Células Th2/inmunología
4.
Ann N Y Acad Sci ; 1284: 46-51, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23651192

RESUMEN

Dendritic cells are master regulators of immunity. Immature dendritic cells are essential for maintaining self-tolerance, while mature dendritic cells initiate a variety of specialized immune responses. Dendritic cell quiescence is often viewed as a default state that requires exogenous stimuli to induce maturation. However, recent studies have identified dendritic cell quiescence factors that actively program dendritic cells to an immature state. In the absence of these factors, dendritic cells spontaneously become immunogenic and can induce autoimmune responses. Herein we discuss two such factors, NF-κB1 and A20, that preserve dendritic cell immaturity through their regulation of NF-κB signaling. Loss of either of these factors increases dendritic cell immunogenicity, suggesting that they may be important targets for enhancing dendritic cell-based cancer immunotherapies. Alternatively, defects in molecules critical for maintaining steady-state DCs may provide novel biomarkers that identify patients who have enhanced natural antitumor immunity or that correlate with better responses to various immunotherapies.


Asunto(s)
Autoinmunidad , Células Dendríticas/inmunología , Vigilancia Inmunológica/inmunología , Neoplasias/inmunología , Animales , Células Presentadoras de Antígenos/inmunología , Antígenos/metabolismo , Autoantígenos/inmunología , Homeostasis , Humanos , Tolerancia Inmunológica/inmunología , FN-kappa B/metabolismo , Autotolerancia/inmunología , Transducción de Señal
5.
PLoS One ; 7(5): e37052, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22693567

RESUMEN

Plasmacytoid dendritic cells (pDC) are the major producers of type I interferons (IFNs) in humans and rapidly produce IFN-α in response to virus exposure. Although HIV infection is associated with pDC activation, it is unclear why the innate immune response is unable to effectively control viral replication. We systematically compared the effect of HIV, Influenza, Sendai, and HSV-2 at similar target cell multiplicity of infection (M.O.I.) on human pDC function. We found that Influenza, Sendai, HSV-2 and imiquimod are able to rapidly induce IFN-α production within 4 hours to maximal levels, whereas HIV had a delayed induction that was maximal only after 24 hours. In addition, maximal IFN-α induction by HIV was at least 10 fold less than that of the other viruses in the panel. HIV also induced less TNF-α and MIP-1ß but similar levels of IP-10 compared to other viruses, which was also mirrored by delayed upregulation of pDC activation markers CD83 and CD86. BDCA-2 has been identified as an inhibitory receptor on pDC, signaling through a pathway that involves SYK phosphorylation. We find that compared to Influenza, HIV induces the activation of the SYK pathway. Thus, HIV delays pDC IFN-α production and pDC activation via SYK phosphorylation, allowing establishment of viral populations.


Asunto(s)
Células Dendríticas/inmunología , Células Dendríticas/virología , VIH/inmunología , VIH/fisiología , Interferón-alfa/biosíntesis , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Células Dendríticas/metabolismo , Humanos , Orthomyxoviridae/inmunología , Orthomyxoviridae/fisiología , Fosforilación , Especificidad de la Especie , Quinasa Syk , Factores de Tiempo , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...