Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Free Radic Biol Med ; 217: 141-156, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38552927

RESUMEN

Current studies indicate that pathological modifications of tau are associated with mitochondrial dysfunction, synaptic failure, and cognitive decline in neurological disorders and aging. We previously showed that caspase-3 cleaved tau, a relevant tau form in Alzheimer's disease (AD), affects mitochondrial bioenergetics, dynamics and synaptic plasticity by the opening of mitochondrial permeability transition pore (mPTP). Also, genetic ablation of tau promotes mitochondrial function boost and increased cognitive capacities in aging mice. However, the mechanisms and relevance of these alterations for the cognitive and mitochondrial abnormalities during aging, which is the primary risk factor for AD, has not been explored. Therefore, in this study we used aging C57BL/6 mice (2-15 and 28-month-old) to evaluate hippocampus-dependent cognitive performance and mitochondrial function. Behavioral tests revealed that aged mice (15 and 28-month-old) showed a reduced cognitive performance compared to young mice (2 month). Concomitantly, isolated hippocampal mitochondria of aged mice showed a significant decrease in bioenergetic-related functions including increases in reactive oxygen species (ROS), mitochondrial depolarization, ATP decreases, and calcium handling defects. Importantly, full-length and caspase-3 cleaved tau were preferentially present in mitochondrial fractions of 15 and 28-month-old mice. Also, aged mice (15 and 28-month-old) showed an increase in cyclophilin D (CypD), the principal regulator of mPTP opening, and a decrease in Opa-1 mitochondrial localization, indicating a possible defect in mitochondrial dynamics. Importantly, we corroborated these findings in immortalized cortical neurons expressing mitochondrial targeted full-length (GFP-T4-OMP25) and caspase-3 cleaved tau (GFP-T4C3-OMP25) which resulted in increased ROS levels and mitochondrial fragmentation, along with a decrease in Opa-1 protein expression. These results suggest that tau associates with mitochondria and this binding increases during aging. This connection may contribute to defects in mitochondrial bioenergetics and dynamics which later may conduce to cognitive decline present during aging.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Caspasa 3/metabolismo , Ratones Endogámicos C57BL , Enfermedad de Alzheimer/metabolismo , Disfunción Cognitiva/patología , Envejecimiento/genética , Mitocondrias/metabolismo , Hipocampo/metabolismo
2.
Autophagy ; 20(3): 577-589, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37899687

RESUMEN

Macroautophagy/autophagy receptors are essential for the recognition and clearance of specific cargos by selective autophagy, which is essential for maintaining MAPT proteostasis. Previous studies have implicated different autophagy receptors in directing distinct species of MAPT to autophagy, but the underlying mechanisms have not been fully investigated. Here we examine how the autophagy receptors NBR1 and SQSTM1 differentially associate with specific forms of MAPT. In primary neurons depletion of NBR1, unlike depletion of SQSTM1, significantly increased phosphorylated MAPT levels. The specificity of the interactions was confirmed using in vitro binding assays with purified proteins. We provide direct evidence that the co-chaperone BAG3 promotes the preferential association of NBR1 with monomeric MAPT and SQSTM1 with oligomeric MAPT. Using an in vitro affinity-isolation assay, we show that SQSTM1 only binds to monomeric MAPT when BAG3 is absent and fails to bind when BAG3 is present. The opposite is true of NBR1; its association with monomeric MAPT was dependent on the presence of BAG3. Interestingly, in Alzheimer disease brain the association of NBR1 with BAG3 was significantly decreased. In a mouse model, ablation of BAG3 in neural cells disrupted the association of NBR1 with phosphorylated MAPT and led to increased levels of phosphorylated and oligomeric MAPT. Overall, our results uncover a novel role for BAG3 in regulating the specificity of selective autophagy receptors in targeting different species of MAPT and provide compelling evidence that BAG3 plays a key role in maintaining MAPT proteostasis.Abbreviations: AD: Alzheimer disease; BAG3: BCL2-associated athanogene 3; BSA: bovine serum albumin; CERAD: Consortium to Establish a Registry for Alzheimer's Disease; ESCRT: endosomal sorting complexes required for transport; GST: glutathione S-transferases; MAPT: microtubule-associated protein tau; NBR1: NBR1, autophagy cargo receptor; NFT: neurofibrillary tangles; PMI: postmortem interval; SQSTM1: sequestosome 1.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Enfermedad de Alzheimer , Ratones , Animales , Proteína Sequestosoma-1/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia , Proteínas Portadoras/metabolismo
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(1): 166898, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37774936

RESUMEN

Mitochondrial dysfunction is a significant factor in the development of Alzheimer's disease (AD). Previous studies have demonstrated that the expression of tau cleaved at Asp421 by caspase-3 leads to mitochondrial abnormalities and bioenergetic impairment. However, the underlying mechanism behind these alterations and their impact on neuronal function remains unknown. To investigate the mechanism behind mitochondrial dysfunction caused by this tau form, we used transient transfection and pharmacological approaches in immortalized cortical neurons and mouse primary hippocampal neurons. We assessed mitochondrial morphology and bioenergetics function after expression of full-length tau and caspase-3-cleaved tau. We also evaluated the mitochondrial permeability transition pore (mPTP) opening and its conformation as a possible mechanism to explain mitochondrial impairment induced by caspase-3 cleaved tau. Our studies showed that pharmacological inhibition of mPTP by cyclosporine A (CsA) prevented all mitochondrial length and bioenergetics abnormalities in neuronal cells expressing caspase-3 cleaved tau. Neuronal cells expressing caspase-3-cleaved tau showed sustained mPTP opening which is mostly dependent on cyclophilin D (CypD) protein expression. Moreover, the impairment of mitochondrial length and bioenergetics induced by caspase-3-cleaved tau were prevented in hippocampal neurons obtained from CypD knock-out mice. Interestingly, previous studies using these mice showed a prevention of mPTP opening and a reduction of mitochondrial failure and neurodegeneration induced by AD. Therefore, our findings showed that caspase-3-cleaved tau negatively impacts mitochondrial bioenergetics through mPTP activation, highlighting the importance of this channel and its regulatory protein, CypD, in the neuronal damage induced by tau pathology in AD.


Asunto(s)
Enfermedad de Alzheimer , Poro de Transición de la Permeabilidad Mitocondrial , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Caspasa 3/genética , Caspasa 3/metabolismo , Peptidil-Prolil Isomerasa F/metabolismo , Mitocondrias/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo
5.
J Neurochem ; 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37787052

RESUMEN

Phosphorylation of tau at sites associated with Alzheimer's disease (AD) likely plays a role in the disease progression. Mitochondrial impairment, correlating with increased presence of phosphorylated tau, has been identified as a contributing factor to neurodegenerative processes in AD. However, how tau phosphorylated at specific sites impacts mitochondrial function has not been fully defined. We examined how AD-relevant phosphomimetics of tau impact selected aspects of mitochondrial biology. To mimic phosphorylation at AD-associated sites, the serine/threonine (Ser/Thr) sites in wild-type green fluorescent protein (GFP)-tagged tau (T4) were converted to glutamic acid (E) to make pseudo-phosphorylated GFP-tagged Ser-396/404 (2EC) and GFP-tagged Thr-231/Ser-235 (2EM) constructs. These constructs were expressed in immortalized mouse hippocampal neuronal cell lines, and their impact on specific mitochondrial functions and responses to stressors were measured. Phosphomimetic tau altered mitochondrial distribution. Specifically, mitochondria accumulated in the soma of cells expressing either 2EC or 2EM and neurite-like extensions in 2EC cells were shorter. Additionally, adenosine triphosphate levels were reduced in both 2EC- and 2EM-expressing cells, and reactive oxygen species (ROS) production increased in 2EC cells during oxidation of succinate when compared to T4-expressing cells. Thapsigargin reduced mitochondrial membrane potential and increased ROS production in both 2EC and 2EM cells relative to T4 cells, with no significant difference in the effects of rotenone. These results show that tau phosphorylation at specific AD-relevant epitopes negatively affects mitochondria, with the extent of dysfunction and stress response varying according to the sites of phosphorylation. Altogether, these findings show that phosphorylated tau increases mitochondrial susceptibility to stressors and extend our understanding of potential mechanisms whereby phosphorylated tau promotes mitochondria dysfunction in tauopathies, including AD.

6.
Nat Commun ; 14(1): 6036, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37758713

RESUMEN

Hydrogen peroxide (H2O2) functions as a second messenger to signal metabolic distress through highly compartmentalized production in mitochondria. The dynamics of reactive oxygen species (ROS) generation and diffusion between mitochondrial compartments and into the cytosol govern oxidative stress responses and pathology, though these processes remain poorly understood. Here, we couple the H2O2 biosensor, HyPer7, with optogenetic stimulation of the ROS-generating protein KillerRed targeted into multiple mitochondrial microdomains. Single mitochondrial photogeneration of H2O2 demonstrates the spatiotemporal dynamics of ROS diffusion and transient hyperfusion of mitochondria due to ROS. This transient hyperfusion phenotype required mitochondrial fusion but not fission machinery. Measurement of microdomain-specific H2O2 diffusion kinetics reveals directionally selective diffusion through mitochondrial microdomains. All-optical generation and detection of physiologically-relevant concentrations of H2O2 between mitochondrial compartments provide a map of mitochondrial H2O2 diffusion dynamics in situ as a framework to understand the role of ROS in health and disease.


Asunto(s)
Peróxido de Hidrógeno , Mitocondrias , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo , Sistemas de Mensajero Secundario
7.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37047031

RESUMEN

Astrocytes are the primary support cells of the central nervous system (CNS) that help maintain the energetic requirements and homeostatic environment of neurons. CNS injury causes astrocytes to take on reactive phenotypes with an altered overall function that can range from supportive to harmful for recovering neurons. The characterization of reactive astrocyte populations is a rapidly developing field, and the underlying factors and signaling pathways governing which type of reactive phenotype that astrocytes take on are poorly understood. Our previous studies suggest that transglutaminase 2 (TG2) has an important role in determining the astrocytic response to injury. Selectively deleting TG2 from astrocytes improves functional outcomes after CNS injury and causes widespread changes in gene regulation, which is associated with its nuclear localization. To begin to understand how TG2 impacts astrocytic function, we used a neuron-astrocyte co-culture paradigm to compare the effects of TG2-/- and wild-type (WT) mouse astrocytes on neurite outgrowth and synapse formation. Neurons were grown on a control substrate or an injury-simulating matrix comprised of inhibitory chondroitin sulfate proteoglycans (CSPGs). Compared to WT astrocytes, TG2-/- astrocytes supported neurite outgrowth to a significantly greater extent only on the CSPG matrix, while synapse formation assays showed mixed results depending on the pre- and post-synaptic markers analyzed. We hypothesize that TG2 regulates the supportive functions of astrocytes in injury conditions by modulating gene expression through interactions with transcription factors and transcription complexes. Based on the results of a previous yeast two-hybrid screen for TG2 interactors, we further investigated the interaction of TG2 with Zbtb7a, a ubiquitously expressed transcription factor. Co-immunoprecipitation and colocalization analyses confirmed the interaction of TG2 and Zbtb7a in the nucleus of astrocytes. Overexpression or knockdown of Zbtb7a levels in WT and TG2-/- astrocytes revealed that Zbtb7a robustly influenced astrocytic morphology and the ability of astrocytes to support neuronal outgrowth, which was significantly modulated by the presence of TG2. These findings support our hypothesis that astrocytic TG2 acts as a transcriptional regulator to influence astrocytic function, with greater influence under injury conditions that increase its expression, and Zbtb7a likely contributes to the overall effects observed with astrocytic TG2 deletion.


Asunto(s)
Astrocitos , Proteína Glutamina Gamma Glutamiltransferasa 2 , Animales , Ratones , Astrocitos/metabolismo , Línea Celular Tumoral , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Neuritas , Proyección Neuronal , Factores de Transcripción/metabolismo
8.
bioRxiv ; 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36798173

RESUMEN

Autophagy receptors are essential for the recognition and clearance of specific cargos by selective autophagy, which is essential for maintaining MAPT proteostasis. Previous studies have implicated different autophagy receptors in directing distinct species of MAPT to autophagy, but the underlying mechanisms have not been fully investigated. Here we examine how the autophagy receptors NBR1 and SQSTM1 differentially engage specific forms of MAPT and facilitate their clearance. In primary neurons depletion of NBR1, unlike depletion of SQSTM1, significantly increased phosphorylated MAPT levels. The specificity of the interactions were confirmed using in vitro binding assays with purified proteins. We provide direct evidence that NBR1 preferentially binds to monomeric MAPT, while SQSTM1 interacts predominantly with oligomeric MAPT, and that the co-chaperone BAG3 regulates the specificity of these interactions. Using an in vitro pulldown assay, we show that SQSTM1 only binds to monomeric MAPT when BAG3 is absent and fails to bind when BAG3 is present. The opposite is true of NBR1; its binding to monomeric MAPT was dependent on the presence of BAG3. Interestingly, in Alzheimer's disease brain the association of NBR1 with BAG3 was significantly decreased. In a mouse model, ablation of BAG3 in neural cells disrupted the association of NBR1 with phosphorylated MAPT and lead to increased levels of phosphorylated and oligomeric MAPT. Overall, our results uncover a novel role for BAG3 in regulating the specificity of selective autophagy receptors in targeting different species of MAPT and provide compelling evidence that BAG3 plays a key role in maintaining MAPT proteostasis.

9.
Neuroscience ; 518: 4-9, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35550160

RESUMEN

Tauopathies are a group of heterogeneous neurodegenerative conditions characterized by the deposition of abnormal tau protein in the brain. The underlying mechanisms that contribute to the accumulation of tau in these neurodegenerative diseases are multifactorial; nonetheless, there is a growing awareness that dysfunction of endosome-lysosome pathways is a pivotal factor. BCL2 associated athanogene 3 (BAG3) is a multidomain protein that plays a key role in maintaining neuronal proteostasis. Further, recent data indicate that BAG3 plays an important role in mediating vacuolar-dependent degradation of tau. Overexpression of BAG3 in a tauopathy mouse model decreased pathological tau levels and alleviated synapse loss. High throughput screens of BAG3 interactors have identified key players in the vacuolar system; these include clathrin and regulators of small GTPases. These findings suggest that BAG3 is an important regulator of endocytic pathways. In this commentary, we discuss the potential mechanisms by which BAG3 regulates the vacuolar system and tau proteostasis.


Asunto(s)
Tauopatías , Proteínas tau , Animales , Ratones , Proteínas tau/metabolismo , Tauopatías/metabolismo , Neuronas/metabolismo , Modelos Animales de Enfermedad , Endosomas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo
10.
Genetics ; 222(1)2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35916724

RESUMEN

Accumulation of inappropriately phosphorylated tau into neurofibrillary tangles is a defining feature of Alzheimer's disease, with Tau pT231 being an early harbinger of tau pathology. Previously, we demonstrated that expressing a single genomic copy of human phosphomimetic mutant tau (T231E) in Caenorhabditis elegans drove age-dependent neurodegeneration. A critical finding was that T231E, unlike wild-type tau, completely and selectively suppressed oxidative stress-induced mitophagy. Here, we used dynamic imaging approaches to analyze T231E-associated changes in mitochondria and mitolysosome morphology, abundance, trafficking, and stress-induced mitophagy as a function of mitochondrial fission mediator dynamin-related protein 1, which has been demonstrated to interact with hyper phosphorylated tau and contribute to Alzheimer's disease pathogenesis, as well as Pink1, a well-recognized mediator of mitochondrial quality control that works together with Parkin to support stress-induced mitophagy. T231E impacted both mitophagy and mitolysosome neurite trafficking with exquisite selectivity, sparing macroautophagy as well as lysosome and autolysosome trafficking. Both oxidative-stress-induced mitophagy and the ability of T231E to suppress it were independent of drp-1, but at least partially dependent on pink-1. Organelle trafficking was more complicated, with drp-1 and pink-1 mutants exerting independent effects, but generally supported the idea that the mitophagy phenotype is of greater physiologic impact in T231E. Collectively, our results refine the mechanistic pathway through which T231E causes neurodegeneration, demonstrating pathologic selectivity for mutations that mimic tauopathy-associated post-translational modifications, physiologic selectivity for organelles that contain damaged mitochondria, and molecular selectivity for dynamin-related protein 1-independent, Pink1-dependent, perhaps adaptive, and mitophagy.


Asunto(s)
Enfermedad de Alzheimer , Proteínas de Caenorhabditis elegans/metabolismo , Dinaminas/metabolismo , Mitofagia , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Dinaminas/genética , Dinaminas/farmacología , Humanos , Mitofagia/fisiología , Proteínas Quinasas/genética , Ubiquitina-Proteína Ligasas/genética
11.
Biol Psychiatry ; 92(1): 10-24, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35000752

RESUMEN

BACKGROUND: Declining proteostasis with aging contributes to increased susceptibility to neurodegenerative diseases, including Alzheimer's disease (AD). Emerging studies implicate impairment of the endosome-lysosome pathway as a significant factor in the pathogenesis of these diseases. Previously, we demonstrated that BAG3 regulates phosphorylated tau clearance. However, we did not fully define how BAG3 regulates endogenous tau proteostasis, especially in the early stages of disease progression. METHODS: Mass spectrometric analyses were performed to identify neuronal BAG3 interactors. Multiple biochemical assays were used to investigate the BAG3-HSP70-TBC1D10B (EPI64B)-RAB35-HRS regulatory networks. Live-cell imaging was used to study the dynamics of the endosomal pathway. Immunohistochemistry and immunoblotting were performed in human AD brains and in P301S tau transgenic mice with BAG3 overexpressed. RESULTS: The primary group of neuronal BAG3 interactors identified are involved in the endocytic pathway. Among them were key regulators of small GTPases, such as the RAB35 GTPase-activating protein TBC1D10B. We demonstrated that a BAG3-HSP70-TBC1D10B complex attenuates the ability of TBC1D10B to inactivate RAB35. Thus, BAG3 interacts with TBC1D10B to support the activation of RAB35 and recruitment of HRS, initiating endosomal sorting complex required for transport-mediated endosomal tau clearance. Furthermore, TBC1D10B shows significantly less colocalization with BAG3 in AD brains than in age-matched controls. Overexpression of BAG3 in P301S tau transgenic mice increased the colocalization of phosphorylated tau with the endosomal sorting complex required for transport III protein CHMP2B and reduced the levels of the mutant human tau. CONCLUSIONS: We identified a novel BAG3-TBC1D10B-RAB35 regulatory axis that modulates endosomal sorting complex required for transport-dependent protein degradation machinery and tau clearance. Dysregulation of BAG3 could contribute to the pathogenesis of AD.


Asunto(s)
Enfermedad de Alzheimer , Proteínas de Unión al GTP Monoméricas , Proteínas Adaptadoras Transductoras de Señales , Enfermedad de Alzheimer/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/metabolismo , Humanos , Lisosomas/metabolismo , Lisosomas/patología , Ratones , Ratones Transgénicos , Proteínas de Unión al GTP Monoméricas/metabolismo , Transporte de Proteínas , Proteínas de Unión al GTP rab/metabolismo , Proteínas tau
12.
J Cell Biochem ; 123(1): 4-21, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33987872

RESUMEN

The multi-domain structure of Bcl-2-associated athanogene 3 (BAG3) facilitates its interaction with many different proteins that participate in regulating a variety of biological pathways. After revisiting the BAG3 literature published over the past ten years with Citespace software, we classified the BAG3 research into several clusters, including cancer, cardiomyopathy, neurodegeneration, and viral propagation. We then highlighted recent key findings in each cluster. To gain greater insight into the roles of BAG3, we analyzed five different published mass spectrometry data sets of proteins that co-immunoprecipitate with BAG3. These data gave us insight into universal, as well as cell-type-specific BAG3 interactors in cancer cells, cardiomyocytes, and neurons. Finally, we mapped variable BAG3 SNPs and also mutation data from previous publications to further explore the link between the domains and function of BAG3. We believe this review will provide a better understanding of BAG3 and direct future studies towards understanding BAG3 function in physiological and pathological conditions.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Cardiomiopatías/metabolismo , Neoplasias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Virosis/metabolismo , Humanos , Mutación , Miocitos Cardíacos/metabolismo , Neoplasias/patología , Neuronas/metabolismo , Polimorfismo de Nucleótido Simple , Virosis/virología
13.
Cells ; 10(11)2021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34831164

RESUMEN

Following CNS injury, astrocytes become "reactive" and exhibit pro-regenerative or harmful properties. However, the molecular mechanisms that cause astrocytes to adopt either phenotype are not well understood. Transglutaminase 2 (TG2) plays a key role in regulating the response of astrocytes to insults. Here, we used mice in which TG2 was specifically deleted in astrocytes (Gfap-Cre+/- TG2fl/fl, referred to here as TG2-A-cKO) in a spinal cord contusion injury (SCI) model. Deletion of TG2 from astrocytes resulted in a significant improvement in motor function following SCI. GFAP and NG2 immunoreactivity, as well as number of SOX9 positive cells, were significantly reduced in TG2-A-cKO mice. RNA-seq analysis of spinal cords from TG2-A-cKO and control mice 3 days post-injury identified thirty-seven differentially expressed genes, all of which were increased in TG2-A-cKO mice. Pathway analysis revealed a prevalence for fatty acid metabolism, lipid storage and energy pathways, which play essential roles in neuron-astrocyte metabolic coupling. Excitingly, treatment of wild type mice with the selective TG2 inhibitor VA4 significantly improved functional recovery after SCI, similar to what was observed using the genetic model. These findings indicate the use of TG2 inhibitors as a novel strategy for the treatment of SCI and other CNS injuries.


Asunto(s)
Astrocitos/enzimología , Eliminación de Gen , Proteína Glutamina Gamma Glutamiltransferasa 2/antagonistas & inhibidores , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Animales , Astrocitos/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/complicaciones , Gliosis/patología , Ratones Noqueados , Proteína Glutamina Gamma Glutamiltransferasa 2/metabolismo , Recuperación de la Función/efectos de los fármacos , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
14.
Expert Opin Ther Targets ; 25(9): 721-731, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34607527

RESUMEN

INTRODUCTION: Transglutaminase 2 (TG2) has been implicated in numerous neurological conditions, including neurodegenerative diseases, multiple sclerosis, and CNS injury. Early studies on the role of TG2 in neurodegenerative conditions focused on its ability to 'crosslink' proteins into insoluble aggregates. However, more recent studies have suggested that this is unlikely to be the primary mechanism by which TG2 contributes to the pathogenic processes. Although the specific mechanisms by which TG2 is involved in neurological conditions have not been clearly defined, TG2 regulates numerous cellular processes through which it could contribute to a specific disease. Given the fact that TG2 is a stress-induced gene and elevated in disease or injury conditions, TG2 inhibitors may be useful neurotherapeutics. AREAS COVERED: Overview of TG2 and different TG2 inhibitors. A brief review of TG2 in neurodegenerative diseases, multiple sclerosis and CNS injury and inhibitors that have been tested in different models. Database search: https://pubmed.ncbi.nlm.nih.gov prior to 1 July 2021. EXPERT OPINION: Currently, it appears unlikely that inhibiting TG2 in the context of neurodegenerative diseases would be therapeutically advantageous. However, for multiple sclerosis and CNS injuries, TG2 inhibitors may have the potential to be therapeutically useful and thus there is rationale for their further development.


Asunto(s)
Enfermedades Neurodegenerativas , Proteína Glutamina Gamma Glutamiltransferasa 2 , Traumatismos del Sistema Nervioso , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Transglutaminasas/genética , Transglutaminasas/metabolismo
15.
Biology (Basel) ; 10(10)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34681146

RESUMEN

Sporadic Alzheimer's Disease (AD) is the most common form of dementia, and its severity is characterized by the progressive formation of tau neurofibrillary tangles along a well-described path through the brain. This spatial progression provides the basis for Braak staging of the pathological progression for AD. Tau protein is a necessary component of AD pathology, and recent studies have found that soluble tau species with selectively, but not extensively, modified epitopes accumulate along the path of disease progression before AD-associated insoluble aggregates form. As such, modified tau may represent a key cellular stressing agent that potentiates selective vulnerability in susceptible neurons during AD progression. Specifically, studies have found that tau phosphorylated at sites such as T181, T231, and S396 may initiate early pathological changes in tau by disrupting proper tau localization, initiating tau oligomerization, and facilitating tau accumulation and extracellular export. Thus, this review elucidates potential mechanisms through which tau post-translational modifications (PTMs) may simultaneously serve as key modulators of the spatial progression observed in AD development and as key instigators of early pathology related to neurodegeneration-relevant cellular dysfunctions.

16.
Mol Neurodegener ; 15(1): 65, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-33168053

RESUMEN

BACKGROUND: A defining pathological hallmark of the progressive neurodegenerative disorder Alzheimer's disease (AD) is the accumulation of misfolded tau with abnormal post-translational modifications (PTMs). These include phosphorylation at Threonine 231 (T231) and acetylation at Lysine 274 (K274) and at Lysine 281 (K281). Although tau is recognized to play a central role in pathogenesis of AD, the precise mechanisms by which these abnormal PTMs contribute to the neural toxicity of tau is unclear. METHODS: Human 0N4R tau (wild type) was expressed in touch receptor neurons of the genetic model organism C. elegans through single-copy gene insertion. Defined mutations were then introduced into the single-copy tau transgene through CRISPR-Cas9 genome editing. These mutations included T231E, to mimic phosphorylation of a commonly observed pathological epitope, and K274/281Q, to mimic disease-associated lysine acetylation - collectively referred as "PTM-mimetics" - as well as a T231A phosphoablation mutant. Stereotypical touch response assays were used to assess behavioral defects in the transgenic strains as a function of age. Genetically-encoded fluorescent biosensors were expressed in touch neurons and used to measure neuronal morphology, mitochondrial morphology, mitophagy, and macro autophagy. RESULTS: Unlike existing tau overexpression models, C. elegans single-copy expression of tau did not elicit overt pathological phenotypes at baseline. However, strains expressing disease associated PTM-mimetics (T231E and K274/281Q) exhibited reduced touch sensation and neuronal morphological abnormalities that increased with age. In addition, the PTM-mimetic mutants lacked the ability to engage neuronal mitophagy in response to mitochondrial stress. CONCLUSIONS: Limiting the expression of tau results in a genetic model where modifications that mimic pathologic tauopathy-associated PTMs contribute to cryptic, stress-inducible phenotypes that evolve with age. These findings and their relationship to mitochondrial stress provides a new perspective into the pathogenic mechanisms underlying AD.


Asunto(s)
Mitofagia/fisiología , Degeneración Nerviosa/patología , Tauopatías/patología , Proteínas tau/genética , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Modelos Animales de Enfermedad , Humanos , Mutación
18.
Mol Neurobiol ; 57(12): 5103-5120, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32851560

RESUMEN

Alzheimer's disease (AD) is the most common progressive neurodegenerative disorder. A defining hallmark of the AD brain is the presence of intraneuronal neurofibrillary tangles (NFTs) which are made up of abnormally modified tau, with aberrant phosphorylation being the most studied posttranslational modification (PTM). Although the accumulation of tau as NFTs is an invariant feature of the AD brain, it has become evident that these insoluble aggregates are likely not the primary pathogenic form of tau, rather soluble forms of tau with abnormal PTMs are the mediators of toxicity. The most prevalent PTM on tau is phosphorylation, with the abnormal modification of specific residues on tau playing a key role in its toxicity. Even though it is widely accepted that tau with aberrant PTMs facilitates neurodegeneration, the precise cellular mechanisms remain unknown. Nonetheless, there is an evolving conceptual framework that an important contributing factor may be selective pathological tau species compromising mitochondrial biology. Understanding the mechanisms by which tau with site-specific PTM impacts mitochondria is crucial for understanding the role tau plays in AD. Here, we provide a brief introduction to tau and its phosphorylation and function in a physiological context, followed by a discussion of the impact of soluble phosphorylated tau species on neuronal processes in general and mitochondria more specifically. We also discuss how therapeutic strategies that attenuate pathological tau species in combination with treatments that improve mitochondrial biology could be a potential therapeutic avenue to mitigate disease progression in AD and other tauopathies.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Mitocondrias/metabolismo , Proteínas tau/metabolismo , Animales , Transporte Axonal , Humanos , Dinámicas Mitocondriales , Fosforilación , Proteínas tau/química
19.
J Alzheimers Dis ; 77(3): 961-977, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32804090

RESUMEN

Mutations in the PSEN1 gene, encoding presenilin 1 (PS1), are the most common cause of familial Alzheimer's disease (fAD). Since the first mutations in the PSEN1 gene were discovered more than 25 years ago, many postulated functions of PS1 have been investigated. The majority of earlier studies focused on its role as the catalytic component of the γ-secretase complex, which in concert with ß site amyloid precursor protein cleaving enzyme 1 (BACE1), mediates the formation of Aß from amyloid-ß protein precursor (AßPP). Though mutant PS1 was originally considered to cause AD by promoting Aß pathology through its protease function, it is now becoming clear that PS1 is a multifunctional protein involved in regulating membrane dynamics and protein trafficking. Therefore, through loss of these abilities, mutant PS1 has the potential to impair numerous cellular functions such as calcium flux, organization of proteins in different compartments, and protein turnover via vacuolar metabolism. Impaired calcium signaling, vacuolar dysfunction, mitochondrial dysfunction, and increased ER stress, among other related membrane-dependent disturbances, have been considered critical to the development and progression of AD. Given that PS1 plays a key regulatory role in all these processes, this review will describe the role of PS1 in different cellular compartments and provide an integrated view of how PS1 dysregulation (due to mutations or other causes) could result in impairment of various cellular processes and result in a "multi-hit", integrated pathological outcome that could contribute to the etiology of AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Membrana Celular/metabolismo , Homeostasis/fisiología , Presenilina-1/metabolismo , Transducción de Señal/fisiología , Enfermedad de Alzheimer/genética , Animales , Membrana Celular/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Humanos , Presenilina-1/genética
20.
Anal Biochem ; 591: 113556, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31866289

RESUMEN

The ubiquitously expressed transglutaminase 2 (TG2) has diverse functions in virtually all cell types, with its role depending not only on cell type, but also on specific subcellular localization. In the central nervous system (CNS) different types of glial cells, such as astrocytes, microglia, and oligodendrocytes and their precursor cells (OPCs), play pivotal supportive functions. This review is focused on what is currently known about the role of TG2 in each type of glial cell, in the context of normal function and pathophysiology. For example, astrocytic TG2 facilitates their migration and proliferation, but hinders their ability to protect neurons after CNS injury. The review also examines the interactions between glial cell types, and how TG2 in one cell type may affect another, as well as implications for specific TG2 populations as therapeutic targets in CNS pathology.


Asunto(s)
Neoplasias del Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/citología , Proteínas de Unión al GTP/metabolismo , Glioma/metabolismo , Neuroglía/metabolismo , Transglutaminasas/metabolismo , Animales , Células Cultivadas , Neoplasias del Sistema Nervioso Central/patología , Glioma/patología , Humanos , Neuroglía/citología , Proteína Glutamina Gamma Glutamiltransferasa 2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...