Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
EJHaem ; 5(1): 3-10, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38406536

RESUMEN

The greatest burden of sickle cell anemia (SCA) globally occurs in sub-Saharan Africa, where significant morbidity and mortality occur secondary to SCA-induced vasculopathy and stroke. Transcranial Doppler ultrasound (TCD) can grade the severity of vasculopathy, with disease modifying therapy resulting in stroke reduction in high-risk children. However, TCD utilization for vasculopathy detection in African children with SCA remains understudied. The objective was to perform a prospective, observational study of TCD findings in a cohort of children with SCA from the Democratic Republic of the Congo, Zambia, and Malawi. A total of 770 children aged 2-17 years without prior stroke underwent screening TCD. A study was scored as low risk when the time-averaged maximum of the mean (TAMMX) in the middle cerebral artery or terminal internal carotid artery was <170 cm/s but >50 cm/s, conditional risk when 170-200 cm/s, and high risk when >200 cm/s. Low-risk studies were identified in 604 children (78%), conditional risk in 129 children (17%), and high risk in three children (0.4%). Additionally, 34 (4%) were scored as having an unknown risk study (TAMMX <50 cm/s). Over the course of 15 months of follow-up, 17 children (2.2%) developed new neurologic symptoms (six with low-risk studies, seven with conditional risk, and four with unknown risk). African children with SCA in this cohort had a low rate of high-risk TCD screening results, even in those who developed new neurologic symptoms. Stroke in this population may be multifactorial with vasculopathy representing only one determinant. The development of a sensitive stroke prediction bundle incorporating relevant elements may help to guide preventative therapies in high-risk children.

2.
Environ Sci Technol ; 58(1): 110-120, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38112502

RESUMEN

Benzotriazole ultraviolet stabilizers (BUVSs) are chemicals used to mitigate UV-induced damage to manufactured goods. Their presence in aquatic environments and biota raises concerns, as certain BUVSs activate the aryl hydrocarbon receptor (AhR), which is linked to adverse effects in fish. However, potencies of BUVSs as AhR agonists and species sensitivities to AhR activation are poorly understood. This study evaluated the toxicity of three BUVSs using embryotoxicity assays. Zebrafish (Danio rerio) embryos exposed to BUVSs by microinjection suffered dose-dependent increases in mortality, with LD50 values of 4772, 11 608, and 56 292 ng/g-egg for UV-P, UV-9, and UV-090, respectively. The potencies and species sensitivities to AhR2 activation by BUVSs were assessed using a luciferase reporter gene assay with COS-7 cells transfected with the AhR2 of zebrafish and eight other fishes. The rank order of potency for activation of the AhR2 from all nine species was UV-P > UV-9 > UV-090. However, AhR2s among species differed in sensitivities to activation by up to 100-fold. An approximate reversed rank order of species sensitivity was observed compared to the rank order of sensitivity to 2,3,7,8-tetrachlorodibenzo[p]dioxin, the prototypical AhR agonist. Despite this, a pre-existing quantitative adverse outcome pathway linking AhR activation to embryo lethality could predict embryotoxicities of BUVSs in zebrafish.


Asunto(s)
Dibenzodioxinas Policloradas , Pez Cebra , Animales , Receptores de Hidrocarburo de Aril/genética , Triazoles/toxicidad , Triazoles/metabolismo , Dibenzodioxinas Policloradas/toxicidad
3.
Pediatr Infect Dis J ; 42(10): 844-850, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37409812

RESUMEN

BACKGROUND: Acute kidney injury is common in severe malaria and is independently associated with mortality. The pathogenesis of acute kidney injury (AKI) in severe malaria remains incompletely understood. Ultrasound-based tools such as point-of-care ultrasound (POCUS), ultrasound cardiac output monitors (USCOMs) and renal arterial resistive index (RRI) can be used to detect hemodynamic and renal blood flow abnormalities contributing to AKI in malaria. METHODS: We conducted a prospective study of Malawian children with cerebral malaria to determine the feasibility of using POCUS and USCOM to characterize hemodynamic contributors to severe AKI (Kidney Disease: Improving Global Outcomes stage 2 or 3). The primary outcome was feasibility (completion rate of study procedures). We also assessed for differences in POCUS and hemodynamic variables for patients with or without severe AKI. RESULTS: We enrolled 27 patients who had admission cardiac and renal ultrasounds and USCOM. Completion rates were high for cardiac (96%), renal (100%) and USCOM studies (96%). Severe AKI occurred in 13 of 27 patients (48%). No patients had ventricular dysfunction. Only 1 patient in the severe AKI group was determined to be hypovolemic ( P = 0.64). No significant differences in USCOM, RRI or venous congestion parameters were detected among patients with and without severe AKI. Mortality was 11% (3/27) with the 3 deaths occurring in the severe AKI group ( P = 0.056). CONCLUSIONS: Ultrasound-based cardiac, hemodynamic and renal blood flow measurements appear to be feasible in pediatric patients with cerebral malaria. We were unable to detect hemodynamic or renal blood flow abnormalities contributing to severe AKI in cerebral malaria. Larger studies are needed to corroborate these findings.


Asunto(s)
Lesión Renal Aguda , Malaria Cerebral , Humanos , Niño , Proyectos Piloto , Malaria Cerebral/complicaciones , Malaria Cerebral/diagnóstico por imagen , Estudios Prospectivos , Sistemas de Atención de Punto , Lesión Renal Aguda/diagnóstico por imagen , Lesión Renal Aguda/etiología , Hemodinámica
4.
Development ; 150(14)2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37401411

RESUMEN

In embryonic stem cell (ESC) models for early development, spatially and temporally varying patterns of signaling and cell types emerge spontaneously. However, mechanistic insight into this dynamic self-organization is limited by a lack of methods for spatiotemporal control of signaling, and the relevance of signal dynamics and cell-to-cell variability to pattern emergence remains unknown. Here, we combine optogenetic stimulation, imaging and transcriptomic approaches to study self-organization of human ESCs (hESC) in two-dimensional (2D) culture. Morphogen dynamics were controlled via optogenetic activation of canonical Wnt/ß-catenin signaling (optoWnt), which drove broad transcriptional changes and mesendoderm differentiation at high efficiency (>99% cells). When activated within cell subpopulations, optoWnt induced cell self-organization into distinct epithelial and mesenchymal domains, mediated by changes in cell migration, an epithelial to mesenchymal-like transition and TGFß signaling. Furthermore, we demonstrate that such optogenetic control of cell subpopulations can be used to uncover signaling feedback mechanisms between neighboring cell types. These findings reveal that cell-to-cell variability in Wnt signaling is sufficient to generate tissue-scale patterning and establish a hESC model system for investigating feedback mechanisms relevant to early human embryogenesis.


Asunto(s)
Células Madre Pluripotentes , Vía de Señalización Wnt , Humanos , Vía de Señalización Wnt/genética , Optogenética , beta Catenina/metabolismo , Células Madre Embrionarias , Diferenciación Celular/genética
5.
Heliyon ; 9(4): e15419, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37128324

RESUMEN

Background and purpose: Transcranial doppler ultrasound (TCD) is a tool that diagnoses and monitors pathophysiological changes to the cerebrovasculature. As cerebral blood flow velocities (CBFVs) increase throughout childhood, interpretation of TCD examinations in pediatrics requires comparison to age matched normative data. Large cohorts of healthy children have not been examined to develop these reference values in any population. There is a complete absence of normative values in African children where, due to lack of alternate neuroimaging techniques, utilization of TCD is rapidly emerging. Materials and methods: A prospective study of 710 healthy African children 3 months-15 years was performed. Demographics, vital signs, and hemoglobin values were recorded. Participants underwent a complete, non-imaging TCD examination. Systolic (Vs), diastolic (Vd), and mean (Vm) flow velocities and pulsatility index (PI) were calculated by the instrument for each measurement. Results: Vs, Vd, and Vm increased through early childhood in all vessels, with the highest CBFVs identified in children 5-5.9 years. There were few significant gender differences in CBFVs in any vessels in any age group. No correlations between blood pressure or hemoglobin and CBFVs were identified. Children in the youngest age groups had CBFVs similar to those previously published, whereas nearly every vessel in children ≥3 years had significantly lower Vs, Vd, and Vm. Conclusions: For the first time, reference TCD values for African children are established. Utilization of these CBFVs in the interpretation of TCD examinations in this population will improve the overall accuracy of TCD as a clinical tool on the continent.

6.
Environ Toxicol Chem ; 42(7): 1575-1585, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37083250

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are naturally occurring or anthropogenic organic chemicals that can activate the aryl hydrocarbon receptor 2 (AhR2) and induce toxicity in fishes. Alkyl PAHs are more abundant than nonalkylated PAHs in certain environmental matrices and there is growing evidence that alkylation can increase potency, dependent on the position of alkylation. However, it is unknown if the effect of alkylation on potency is conserved across species. In addition, relatively little is known regarding the extent of interspecies variation in sensitivity to PAHs and alkyl PAHs. Therefore, objectives of the present study were to characterize potency of benz[a]anthracene (BAA) and three alkylated homologues representing different alkylation positions in nine phylogenetically diverse species of fish using a standardized in vitro AhR2 transactivation assay. BAA and each alkylated homologue activated the AhR2 in a concentration-dependent manner in each species. Position-dependent effects on potency were observed in every species, but these effects were not consistent across species. Interspecies variation in sensitivity to AhR2 activation by each PAH was observed and ranged by up to 561-fold. Alkylation both increased and decreased the range of interspecies variation and sensitivity, but the potency of each alkylated homologue relative to BAA ranged by less than an order of magnitude among species. These results represent an early step toward the consideration of alkylated homologues for more objective ecological risk assessments of PAHs to native fishes. Environ Toxicol Chem 2023;42:1575-1585. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Receptores de Hidrocarburo de Aril , Animales , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Activación Transcripcional , Antracenos , Hidrocarburos Policíclicos Aromáticos/toxicidad , Hidrocarburos Policíclicos Aromáticos/química , Peces/genética , Peces/metabolismo , Alquilación
7.
Sci Total Environ ; 872: 162176, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36775163

RESUMEN

Hydrothermal carbonization (HTC) is an emerging technology that may potentially address sanitation problems and energy scarcity. However, the significance of the parameters that govern HTC (e.g., temperature and time) is not fully understood, in particular for human excreta. A simplified coalification model was used to describe the 'strength' of thermal reactions by combining temperature and time into a single parameter, the severity factor. This study is the first to assess the extent to which a severity coalification model can predict the properties of human-excreta-derived hydrochar for a given severity with different combinations of reaction time and temperature. HTC experiments with raw human excreta were undertaken with 50 mL batch reactors at five different severities. Severity was established with different combinations of temperature (180 °C, 210 °C, and 240 °C) and reaction time based on the severity-factor equation. The resulting hydrochars were tested for combustion properties, and the respective gas emission as well as, physicochemical and surface area parameters. Significant correlations were found between severity and yield (R2 = 0.88), carbon content (R2 = 0.85), and calorific value (R2 = 0.90), with the properties being similar for a given severity but varying with different severities. Hydrochar's contact angle increased from 53.1° to 81.3° with increasing SF, while surface area remained low, ranging from <1 to 5.1 m2g-1, with no definite correlation to SF. Combustion profiles for a given severity were generally similar, but the ignition, peak, and burnout temperatures differed between severities. Gram-Schmidt curves indicated that gas emission profiles are similar for a given severity but vary with different severities. The main gases emitted in combustion were virtually identical in all treatments, and included CO2, alkenes (C9, C10), CH4, and H2O. It is concluded that many properties of hydrochar can be inferred from the severity factor.

8.
Am J Trop Med Hyg ; 107(4): 820-826, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36067988

RESUMEN

Malaria resulted in an estimated 627,000 deaths in 2020, the majority of which occurred in children under 5 years of age. Cerebral malaria (CM) is a severe manifestation of the disease with case fatality rates of up to 40%. Autopsies in children with CM have demonstrated sequestration of Plasmodium falciparum parasites in the brain as well as multiple other organs. Thus, multiple organ dysfunction syndrome (MODS) may be present in pediatric patients with CM, but its frequency and association with mortality have not been evaluated. This is a retrospective study of data collected prospectively from children with CM admitted in Blantyre, Malawi. Physical examination findings and laboratory values necessary to calculate a Pediatric Logistic Organ Dysfunction-2 (PELOD-2) score, a validated method that quantifies organ dysfunction in critically ill children, were abstracted. A total of 145 patients were included. Mortality was 15% (n = 22). Ten patients (7%) had single organ dysfunction, 36 (25%) had two organs involved, 68 (47%) had dysfunction of three organs, and 31 (21%) patients had four organs affected. Beyond neurologic dysfunction, other organ systems involved included hematologic (77%), renal (61%), cardiovascular (44%), and respiratory (1%). The median PELOD-2 score on admission was 4 (interquartile range [IQR] = 3-6) in survivors and 6.5 (IQR = 5-10) in the nonsurvivors (P < 0.0001). Admission PELOD-2 score predicted mortality with an area under the curve of 0.75. MODS is widespread in pediatric patients with CM. Objectively identifying children with MODS, and therefore at an increased risk of mortality, may allow for the allocation of limited resources.


Asunto(s)
Malaria Cerebral , Insuficiencia Multiorgánica , Niño , Preescolar , Humanos , Unidades de Cuidado Intensivo Pediátrico , Malaria Cerebral/diagnóstico , Insuficiencia Multiorgánica/etiología , Estudios Prospectivos , Estudios Retrospectivos , Índice de Severidad de la Enfermedad
9.
iScience ; 25(10): 104971, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36147944

RESUMEN

Human pluripotent stem cells (hPSCs) are an exciting and promising source to enable cell replacement therapies for a variety of unmet medical needs. Though hPSCs can be successfully derived into numerous physiologically relevant cell types, effective translation to the clinic is limited by challenges in scalable production of high-quality cells, cellular immaturity following the differentiation process, and the use of animal-derived components in culture. To address these limitations, we have developed a fully defined, reproducible, and tunable thermoreversible polymer for high-quality, scalable 3D cell production. Our reproducible synthesis method enables precise control of gelation temperature (24°C-32°C), hydrogel stiffness (100-4000 Pa), and the prevention of any unintended covalent crosslinking. After material optimization, we demonstrated hPSC expansion, pluripotency maintenance, and differentiation into numerous lineages within the hydrogel. Overall, this 3D thermoreversible hydrogel platform has broad applications in scalable, high-quality cell production to overcome the biomanufacturing burden of stem cell therapy.

10.
Malar J ; 21(1): 196, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35729574

RESUMEN

BACKGROUND: Cerebral malaria (CM) results in significant paediatric death and neurodisability in sub-Saharan Africa. Several different alterations to typical Transcranial Doppler Ultrasound (TCD) flow velocities and waveforms in CM have been described, but mechanistic contributors to these abnormalities are unknown. If identified, targeted, TCD-guided adjunctive therapy in CM may improve outcomes. METHODS: This was a prospective, observational study of children 6 months to 12 years with CM in Blantyre, Malawi recruited between January 2018 and June 2021. Medical history, physical examination, laboratory analysis, electroencephalogram, and magnetic resonance imaging were undertaken on presentation. Admission TCD results determined phenotypic grouping following a priori definitions. Evaluation of the relationship between haemodynamic, metabolic, or intracranial perturbations that lead to these observed phenotypes in other diseases was undertaken. Neurological outcomes at hospital discharge were evaluated using the Paediatric Cerebral Performance Categorization (PCPC) score. RESULTS: One hundred seventy-four patients were enrolled. Seven (4%) had a normal TCD examination, 57 (33%) met criteria for hyperaemia, 50 (29%) for low flow, 14 (8%) for microvascular obstruction, 11 (6%) for vasospasm, and 35 (20%) for isolated posterior circulation high flow. A lower cardiac index (CI) and higher systemic vascular resistive index (SVRI) were present in those with low flow than other groups (p < 0.003), though these values are normal for age (CI 4.4 [3.7,5] l/min/m2, SVRI 1552 [1197,1961] dscm-5m2). Other parameters were largely not significantly different between phenotypes. Overall, 118 children (68%) had a good neurological outcome. Twenty-three (13%) died, and 33 (19%) had neurological deficits. Outcomes were best for participants with hyperaemia and isolated posterior high flow (PCPC 1-2 in 77 and 89% respectively). Participants with low flow had the least likelihood of a good outcome (PCPC 1-2 in 42%) (p < 0.001). Cerebral autoregulation was significantly better in children with good outcome (transient hyperemic response ratio (THRR) 1.12 [1.04,1.2]) compared to a poor outcome (THRR 1.05 [0.98,1.02], p = 0.05). CONCLUSIONS: Common pathophysiological mechanisms leading to TCD phenotypes in non-malarial illness are not causative in children with CM. Alternative mechanistic contributors, including mechanical factors of the cerebrovasculature and biologically active regulators of vascular tone should be explored.


Asunto(s)
Hiperemia , Malaria Cerebral , Vasoespasmo Intracraneal , Circulación Cerebrovascular/fisiología , Niño , Humanos , Hiperemia/complicaciones , Malaria Cerebral/complicaciones , Malaria Cerebral/diagnóstico por imagen , Fenotipo , Estudios Prospectivos , Ultrasonografía Doppler Transcraneal/efectos adversos , Ultrasonografía Doppler Transcraneal/métodos , Vasoespasmo Intracraneal/etiología
11.
Environ Toxicol Chem ; 41(8): 1993-2002, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35694968

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are structurally diverse organic chemicals that can have adverse effects on the health of fishes through activation of aryl hydrocarbon receptor 2 (AhR2). They are ubiquitous in the environment, but alkyl PAHs are more abundant in some environmental matrices. However, relatively little is known regarding the effects of alkylation on the toxicity of PAHs to fishes in vivo and how this relates to potency for activation of AhR2 in vitro. Therefore, the objectives of the present study were to determine the toxicity of benz[a]anthracene and three alkylated homologs representing various alkylation positions to early life stages of zebrafish (Danio rerio) and to assess the potency of each for activation of the zebrafish AhR2 in a standardized in vitro AhR transactivation assay. Exposure of embryos to each of the PAHs caused a dose-dependent increase in mortality and malformations characteristic of AhR2 activation. Each alkyl homolog had in vivo toxicities and in vitro AhR2 activation potencies different from those of the parent PAH in a position-dependent manner. However, there was no statistically significant linear relationship between responses measured in these assays. The results suggest a need for further investigation into the effect of alkylation on the toxicity of PAHs to fishes and greater consideration of the contribution of alkylated homologs in ecological risk assessments. Environ Toxicol Chem 2022;41:1993-2002. © 2022 SETAC.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Pez Cebra , Alquilación , Animales , Antracenos/metabolismo , Embrión no Mamífero , Hidrocarburos Policíclicos Aromáticos/metabolismo , Hidrocarburos Policíclicos Aromáticos/toxicidad , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Activación Transcripcional , Pez Cebra/metabolismo
12.
Front Pediatr ; 10: 756643, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35372149

RESUMEN

Background: The majority of childhood deaths occur in low- and middle-income countries (LMICs). Many of these deaths are avoidable with basic critical care interventions. Quantifying the burden of pediatric critical illness in LMICs is essential for targeting interventions to reduce childhood mortality. Objective: To determine the burden of hospitalization and mortality associated with acute pediatric critical illness in LMICs through a systematic review and meta-analysis of the literature. Data Sources and Search Strategy: We will identify eligible studies by searching MEDLINE, EMBASE, CINAHL, and LILACS using MeSH terms and keywords. Results will be limited to infants or children (ages >28 days to 12 years) hospitalized in LMICs and publications in English, Spanish, or French. Publications with non-original data (e.g., comments, editorials, letters, notes, conference materials) will be excluded. Study Selection: We will include observational studies published since January 1, 2005, that meet all eligibility criteria and for which a full text can be located. Data Extraction: Data extraction will include information related to study characteristics, hospital characteristics, underlying population characteristics, patient population characteristics, and outcomes. Data Synthesis: We will extract and report data on study, hospital, and patient characteristics; outcomes; and risk of bias. We will report the causes of admission and mortality by region, country income level, and age. We will report or calculate the case fatality rate (CFR) for each diagnosis when data allow. Conclusions: By understanding the burden of pediatric critical illness in LMICs, we can advocate for resources and inform resource allocation and investment decisions to improve the management and outcomes of children with acute pediatric critical illness in LMICs.

13.
Front Cell Neurosci ; 16: 811493, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35273478

RESUMEN

Cells reside in a dynamic microenvironment that presents them with regulatory signals that vary in time, space, and amplitude. The cell, in turn, interprets these signals and accordingly initiates downstream processes including cell proliferation, differentiation, migration, and self-organization. Conventional approaches to perturb and investigate signaling pathways (e.g., agonist/antagonist addition, overexpression, silencing, knockouts) are often binary perturbations that do not offer precise control over signaling levels, and/or provide limited spatial or temporal control. In contrast, optogenetics leverages light-sensitive proteins to control cellular signaling dynamics and target gene expression and, by virtue of precise hardware control over illumination, offers the capacity to interrogate how spatiotemporally varying signals modulate gene regulatory networks and cellular behaviors. Recent studies have employed various optogenetic systems in stem cell, embryonic, and somatic cell patterning studies, which have addressed fundamental questions of how cell-cell communication, subcellular protein localization, and signal integration affect cell fate. Other efforts have explored how alteration of signaling dynamics may contribute to neurological diseases and have in the process created physiologically relevant models that could inform new therapeutic strategies. In this review, we focus on emerging applications within the expanding field of optogenetics to study gene regulation, cell signaling, neurodevelopment, and neurological disorders, and we comment on current limitations and future directions for the growth of the field.

14.
Pediatr Cardiol ; 43(7): 1517-1521, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35347349

RESUMEN

Thrombosis, especially thrombosis of the pulmonary artery, is a large contributor to morbidity and mortality following comprehensive stage 2 procedure for single ventricle cardiac physiology. A peri-operative management protocol was implemented at our institution in March 2010. It includes 6 weeks of therapeutic anticoagulation post-operatively to mitigate the thrombotic risks in this patient population. This is a retrospective study of hospitalized children who received post-operative anticoagulation following a comprehensive stage 2 procedure for single ventricle cardiac physiology at a free-standing children's hospital. The primary objectives are to describe our institution's anticoagulation strategy and report on the number of thromboses and major bleeding episodes in the 6 weeks post-operatively. Secondary objectives include the dose of enoxaparin required to obtain a therapeutic low-molecular weight anti-factor-Xa (AFXaLMWH) level, and the number of patients outside of the therapeutic range. A total of 71 infants were included in the final analysis. Four patients experienced a thrombosis episode and three patients experienced clinically significant bleeding. The mean dose of enoxaparin required to obtain a therapeutic AFXaLMWH level between 0.5-1 unit/mL was 1.23 mg/kg SQ every 12 h and 37% of patients achieved goal AFXaLMWH levels with the initial starting dose of enoxaparin 1 mg/kg SQ every 12 h. We describe a 9-year experience of anticoagulation after single ventricle palliation. Anticoagulation with therapeutic AFXaLMWH goals of 0.5-1 unit/mL may reduce the rates of clinically significant thrombosis post-operatively in this population and appears safe without increase in significant bleeding episodes when compared to a historical cohort. Further studies comparing this population to those who do not receive post-operative anticoagulation are warranted.


Asunto(s)
Enoxaparina , Trombosis , Anticoagulantes/efectos adversos , Coagulación Sanguínea , Niño , Enoxaparina/efectos adversos , Humanos , Lactante , Estudios Retrospectivos , Trombosis/etiología , Trombosis/prevención & control
15.
Acta Biomater ; 130: 161-171, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34087443

RESUMEN

Hydrogels with dynamically tunable crosslinking are invaluable for directing stem cell fate and mimicking a stiffening matrix during fibrosis or tumor development. The increases in matrix stiffness during tissue development are often accompanied by the accumulation of extracellular matrices (e.g., collagen, hyaluronic acid (HA)), a phenomenon that has received little attention in the development of dynamic hydrogels. In this contribution, we present a gelatin-based cell-laden hydrogel system capable of being dynamically stiffened while accumulating HA, a key glycosaminoglycans (GAG) increasingly deposited by stromal cells during tumor progression. Central to this strategy is the synthesis of a dually-modified gelatin macromer - gelatin-norbornene-carbohydrazide (GelNB-CH), which is susceptible to both thiol-norbornene photopolymerization and hydrazone click chemistry. We demonstrate that the crosslinking density of cell-laden thiol-norbornene hydrogels can be dynamically tuned via simple incubation with aldehyde-bearing macromers (e.g., oxidized dextran (oDex) or oHA). The GelNB-CH hydrogel system is highly cytocompatible, as demonstrated by in situ encapsulation of pancreatic cancer cells (PCC) and cancer-associated fibroblasts (CAF). This unique dynamic stiffening scheme provides a platform to study tandem accumulation of HA and elevation in matrix stiffness in the pancreatic tumor microenvironment. STATEMENT OF SIGNIFICANCE: Hydrogels permitting on-demand and secondary crosslinking are ideal for mimicking a stiffening tumor microenvironment (TME). However, none of the current dynamic hydrogels account for both stiffening and accumulation of hyaluronic acid (HA), a major extracellular matrix component increasingly deposited in tumor stromal tissues, including pancreatic ductal adenocarcinoma (PDAC). The current work addresses this gap by developing a dynamic hydrogel system capable of simultaneously increasing stiffness and HA accumulation. This is achieved by a new gelatin macromer permitting sequential thiol-norbornene (for primary network crosslinking) and hydrazone click chemistry (for bioinert or biomimetic stiffening with oxidized dextran (oDex) or oHA, respectively). The results of this study provide new insights into how dynamically changing physicochemical matrix properties guide cancer cell fate processes.


Asunto(s)
Hidrogeles , Neoplasias Pancreáticas , Biomimética , Química Clic , Humanos , Hidrazonas , Compuestos de Sulfhidrilo , Microambiente Tumoral
16.
STAR Protoc ; 2(1): 100261, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33490977

RESUMEN

Pericytes play a critical role in promoting, regulating, and maintaining numerous vascular functions. Their dysfunction is a major contributor to the progression of vascular and neurodegenerative diseases, making them an ideal candidate for large-scale production for disease modeling and regenerative cell therapy. This protocol describes the rapid and robust differentiation of pericytes from human induced pluripotent stem cells (hiPSCs) while simultaneously generating a population of hiPSC-derived endothelial progenitor cells. For complete details on the use and execution of this protocol, please refer to Zhang et al. (2017).


Asunto(s)
Técnicas de Cultivo de Célula , Diferenciación Celular , Células Madre Pluripotentes Inducidas/metabolismo , Pericitos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Pericitos/citología
17.
STAR Protoc ; 1(3): 100141, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33377035

RESUMEN

Optogenetic modulation of protein interactions enables spatiotemporal control of cellular signaling dynamics in a variety of biological systems. However, light patterning by standard microscopes is limited by their complexity, sample throughput, and cost. To address the need for low-cost, user-friendly, and high-throughput photopatterning, we have engineered devices for light activation at variable amplitudes (LAVA). This protocol describes the assembly of LAVA devices, which enable spatial and temporal control of optogenetic stimulation and cellular signaling dynamics in multiwell cell culture plates. For complete details on the use and execution of this protocol, please refer to Repina et al. (2020).


Asunto(s)
Optogenética/instrumentación , Optogenética/métodos , Técnicas de Cultivo de Célula , Luz , Iluminación , Transducción de Señal
18.
Adv Biosyst ; 4(11): e2000129, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32924337

RESUMEN

Xeno-free, chemically defined poly(ethylene glycol) (PEG)-based hydrogels are being increasingly used for in vitro culture and differentiation of human induced pluripotent stem cells (hiPSCs). These synthetic matrices provide tunable gelation and adaptable material properties crucial for guiding stem cell fate. Here, sequential norbornene-click chemistries are integrated to form synthetic, dynamically tunable PEG-peptide hydrogels for hiPSCs culture and differentiation. Specifically, hiPSCs are photoencapsulated in thiol-norbornene hydrogels crosslinked by multiarm PEG-norbornene (PEG-NB) and proteaselabile crosslinkers. These matrices are used to evaluate hiPSC growth under the influence of extracellular matrix properties. Tetrazine-norbornene (Tz-NB) click reaction is then employed to dynamically stiffen the cell-laden hydrogels. Fast reactive Tz and its stable derivative methyltetrazine (mTz) are tethered to multiarm PEG, yielding mono-functionalized PEG-Tz, PEG-mTz, and dualfunctionalized PEG-Tz/mTz that react with PEG-NB to form additional crosslinks in the cell-laden hydrogels. The versatility of Tz-NB stiffening is demonstrated with different Tz-modified macromers or by intermittent incubation of PEG-Tz for temporal stiffening. Finally, the Tz-NB-mediated dynamic stiffening is explored for 4D culture and definitive endoderm differentiation of hiPSCs. Overall, this dynamic hydrogel platform affords exquisite controls of hydrogel crosslinking for serving as a xeno-free and dynamic stem cell niche.


Asunto(s)
Química Clic/métodos , Hidrogeles/química , Células Madre Pluripotentes Inducidas/citología , Ingeniería de Tejidos/métodos , Diferenciación Celular/fisiología , Células Cultivadas , Humanos
19.
Adv Healthc Mater ; 9(16): e2000825, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32613760

RESUMEN

There is a vital need to develop in vitro models of the developing human brain to recapitulate the biological effects that toxic compounds have on the brain. To model perineural vascular plexus (PNVP) in vitro, which is a key stage in embryonic development, human embryonic stem cells (hESC)-derived endothelial cells (ECs), neural progenitor cells, and microglia (MG) with primary pericytes (PCs) in synthetic hydrogels in a custom-designed microfluidics device are cocultured. The formation of a vascular plexus that includes networks of ECs (CD31+, VE-cadherin+), MG (IBA1+), and PCs (PDGFRß+), and an overlying neuronal layer that includes differentiated neuronal cells (ßIII Tubulin+, GFAP+) and radial glia (Nestin+, Notch2NL+), are characterized. Increased brain-derived neurotrophic factor secretion and differential metabolite secretion by the vascular plexus and the neuronal cells over time are consistent with PNVP functionality. Multiple concentrations of developmental toxicants (teratogens, microglial disruptor, and vascular network disruptors) significantly reduce the migration of ECs and MG toward the neuronal layer, inhibit formation of the vascular network, and decrease vascular endothelial growth factor A (VEGFA) secretion. By quantifying 3D cell migration, metabolic activity, vascular network disruption, and cytotoxicity, the PNVP model may be a useful tool to make physiologically relevant predictions of developmental toxicity.


Asunto(s)
Células Endoteliales , Factor A de Crecimiento Endotelial Vascular , Diferenciación Celular , Técnicas de Cocultivo , Humanos , Pericitos
20.
Cell Rep ; 31(10): 107737, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32521262

RESUMEN

Spatially and temporally varying patterns of morphogen signals during development drive cell fate specification at the proper location and time. However, current in vitro methods typically do not allow for precise, dynamic spatiotemporal control of morphogen signaling and are thus insufficient to readily study how morphogen dynamics affect cell behavior. Here, we show that optogenetic Wnt/ß-catenin pathway activation can be controlled at user-defined intensities, temporal sequences, and spatial patterns using engineered illumination devices for optogenetic photostimulation and light activation at variable amplitudes (LAVA). By patterning human embryonic stem cell (hESC) cultures with varying light intensities, LAVA devices enabled dose-responsive control of optoWnt activation and Brachyury expression. Furthermore, time-varying and spatially localized patterns of light revealed tissue patterning that models the embryonic presentation of Wnt signals in vitro. LAVA devices thus provide a low-cost, user-friendly method for high-throughput and spatiotemporal optogenetic control of cell signaling for applications in developmental and cell biology.


Asunto(s)
Células Madre Embrionarias/metabolismo , Optogenética/métodos , Diferenciación Celular , Humanos , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...