Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 242(2): 658-674, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38375883

RESUMEN

The jasmonic acid (JA) signalling pathway plays an important role in the establishment of the ectomycorrhizal symbiosis. The Laccaria bicolor effector MiSSP7 stabilizes JA corepressor JAZ6, thereby inhibiting the activity of Populus MYC2 transcription factors. Although the role of MYC2 in orchestrating plant defences against pathogens is well established, its exact contribution to ECM symbiosis remains unclear. This information is crucial for understanding the balance between plant immunity and symbiotic relationships. Transgenic poplars overexpressing or silencing for the two paralogues of MYC2 transcription factor (MYC2s) were produced, and their ability to establish ectomycorrhiza was assessed. Transcriptomics and DNA affinity purification sequencing were performed. MYC2s overexpression led to a decrease in fungal colonization, whereas its silencing increased it. The enrichment of terpene synthase genes in the MYC2-regulated gene set suggests a complex interplay between the host monoterpenes and fungal growth. Several root monoterpenes have been identified as inhibitors of fungal growth and ECM symbiosis. Our results highlight the significance of poplar MYC2s and terpenes in mutualistic symbiosis by controlling root fungal colonization. We identified poplar genes which direct or indirect control by MYC2 is required for ECM establishment. These findings deepen our understanding of the molecular mechanisms underlying ECM symbiosis.


Asunto(s)
Ciclopentanos , Laccaria , Micorrizas , Oxilipinas , Populus , Micorrizas/genética , Populus/metabolismo , Raíces de Plantas/metabolismo , Simbiosis/genética , Laccaria/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Monoterpenos/metabolismo
2.
Nucleic Acids Res ; 51(16): 8383-8401, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37526283

RESUMEN

Gene functional descriptions offer a crucial line of evidence for candidate genes underlying trait variation. Conversely, plant responses to environmental cues represent important resources to decipher gene function and subsequently provide molecular targets for plant improvement through gene editing. However, biological roles of large proportions of genes across the plant phylogeny are poorly annotated. Here we describe the Joint Genome Institute (JGI) Plant Gene Atlas, an updateable data resource consisting of transcript abundance assays spanning 18 diverse species. To integrate across these diverse genotypes, we analyzed expression profiles, built gene clusters that exhibited tissue/condition specific expression, and tested for transcriptional response to environmental queues. We discovered extensive phylogenetically constrained and condition-specific expression profiles for genes without any previously documented functional annotation. Such conserved expression patterns and tightly co-expressed gene clusters let us assign expression derived additional biological information to 64 495 genes with otherwise unknown functions. The ever-expanding Gene Atlas resource is available at JGI Plant Gene Atlas (https://plantgeneatlas.jgi.doe.gov) and Phytozome (https://phytozome.jgi.doe.gov/), providing bulk access to data and user-specified queries of gene sets. Combined, these web interfaces let users access differentially expressed genes, track orthologs across the Gene Atlas plants, graphically represent co-expressed genes, and visualize gene ontology and pathway enrichments.


Asunto(s)
Genes de Plantas , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Filogenia , Programas Informáticos , Transcriptoma/genética , Atlas como Asunto
3.
Am J Med Qual ; 38(3): 154-159, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37125671

RESUMEN

The authors hypothesize that standardized telehealth (TH) scheduling processes will improve TH utilization without increasing adverse events. Fifty visits preimplementation and 67 visits postimplementation were audited from June 2021 to January 2022. Both leadership and frontline stakeholders were engaged to identify current workflows and potential interventions targeting outpatient elective procedures. Process mapping outlined current TH scheduling workflows. Outcomes related to TH completion, cost, and TH scheduling were collected after implementation. Preimplementation TH scheduling rate was 32%. The intervention required TH postoperative appointments to be scheduled in clinic at the time of surgery scheduling with TH being the default postsurgical appointment for a standardized list of eligible procedures. Following implementation, 95% of patients undergoing eligible procedures had TH follow-up. This provided improved access to surgical follow-up care, by reducing travel needs to the Veterans Affairs facility. Secondarily, this intervention increased clinic appointment availability and resulted in possible increased revenue for billable visits. Standardizing TH scheduling based on the procedure improves the utilization of TH resulting in improved clinic efficiency and increased revenue, without increasing adverse events.


Asunto(s)
Citas y Horarios , Telemedicina , Humanos , Instituciones de Atención Ambulatoria , Factores de Tiempo , Eficiencia Organizacional
4.
New Phytol ; 238(6): 2561-2577, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36807327

RESUMEN

Ectomycorrhizas are an intrinsic component of tree nutrition and responses to environmental variations. How epigenetic mechanisms might regulate these mutualistic interactions is unknown. By manipulating the level of expression of the chromatin remodeler DECREASE IN DNA METHYLATION 1 (DDM1) and two demethylases DEMETER-LIKE (DML) in Populus tremula × Populus alba lines, we examined how host DNA methylation modulates multiple parameters of the responses to root colonization with the mutualistic fungus Laccaria bicolor. We compared the ectomycorrhizas formed between transgenic and wild-type (WT) trees and analyzed their methylomes and transcriptomes. The poplar lines displaying lower mycorrhiza formation rate corresponded to hypomethylated overexpressing DML or RNAi-ddm1 lines. We found 86 genes and 288 transposable elements (TEs) differentially methylated between WT and hypomethylated lines (common to both OX-dml and RNAi-ddm1) and 120 genes/1441 TEs in the fungal genome suggesting a host-induced remodeling of the fungal methylome. Hypomethylated poplar lines displayed 205 differentially expressed genes (cis and trans effects) in common with 17 being differentially methylated (cis). Our findings suggest a central role of host and fungal DNA methylation in the ability to form ectomycorrhizas including not only poplar genes involved in root initiation, ethylene and jasmonate-mediated pathways, and immune response but also terpenoid metabolism.


Asunto(s)
Laccaria , Micorrizas , Populus , Micorrizas/fisiología , Árboles/genética , Árboles/metabolismo , Raíces de Plantas/metabolismo , Metilación de ADN/genética , ADN , Populus/metabolismo , Laccaria/genética
5.
New Phytol ; 238(2): 845-858, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36702619

RESUMEN

Ectomycorrhizal (EcM) fungi play a crucial role in the mineral nitrogen (N) nutrition of their host trees. While it has been proposed that several EcM species also mobilize organic N, studies reporting the EcM ability to degrade N-containing polymers, such as chitin, remain scarce. Here, we assessed the capacity of a representative collection of 16 EcM species to acquire 15 N from 15 N-chitin. In addition, we combined genomics and transcriptomics to identify pathways involved in exogenous chitin degradation between these fungal strains. Boletus edulis, Imleria badia, Suillus luteus, and Hebeloma cylindrosporum efficiently mobilized N from exogenous chitin. EcM genomes primarily contained genes encoding for the direct hydrolysis of chitin. Further, we found a significant relationship between the capacity of EcM fungi to assimilate organic N from chitin and their genomic and transcriptomic potentials for chitin degradation. These findings demonstrate that certain EcM fungal species depolymerize chitin using hydrolytic mechanisms and that endochitinases, but not exochitinases, represent the enzymatic bottleneck of chitin degradation. Finally, this study shows that the degradation of exogenous chitin by EcM fungi might be a key functional trait of nutrient cycling in forests dominated by EcM fungi.


Asunto(s)
Micorrizas , Micorrizas/genética , Micorrizas/metabolismo , Quitina/metabolismo , Árboles/metabolismo , Bosques , Genómica , Suelo
6.
Proc Natl Acad Sci U S A ; 119(36): e2116841119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36037379

RESUMEN

Most of the described species in kingdom Fungi are contained in two phyla, the Ascomycota and the Basidiomycota (subkingdom Dikarya). As a result, our understanding of the biology of the kingdom is heavily influenced by traits observed in Dikarya, such as aerial spore dispersal and life cycles dominated by mitosis of haploid nuclei. We now appreciate that Fungi comprises numerous phylum-level lineages in addition to those of Dikarya, but the phylogeny and genetic characteristics of most of these lineages are poorly understood due to limited genome sampling. Here, we addressed major evolutionary trends in the non-Dikarya fungi by phylogenomic analysis of 69 newly generated draft genome sequences of the zoosporic (flagellated) lineages of true fungi. Our phylogeny indicated five lineages of zoosporic fungi and placed Blastocladiomycota, which has an alternation of haploid and diploid generations, as branching closer to the Dikarya than to the Chytridiomyceta. Our estimates of heterozygosity based on genome sequence data indicate that the zoosporic lineages plus the Zoopagomycota are frequently characterized by diploid-dominant life cycles. We mapped additional traits, such as ancestral cell-cycle regulators, cell-membrane- and cell-wall-associated genes, and the use of the amino acid selenocysteine on the phylogeny and found that these ancestral traits that are shared with Metazoa have been subject to extensive parallel loss across zoosporic lineages. Together, our results indicate a gradual transition in the genetics and cell biology of fungi from their ancestor and caution against assuming that traits measured in Dikarya are typical of other fungal lineages.


Asunto(s)
Hongos , Estadios del Ciclo de Vida , Filogenia , Diploidia , Hongos/clasificación , Hongos/genética , Genoma Fúngico/genética
7.
Clin Shoulder Elb ; 25(3): 188-194, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35791681

RESUMEN

BACKGROUND: Medial elbow laxity develops in throwing athletes due to valgus forces. Medial elbow instability in professional, collegiate, and high school athletes is well documented; however, the medial elbow of young throwing athletes has received less attention. This study investigated the medial elbow and common flexor tendon during applied elbow valgus stress of youth baseball players. METHODS: The study included 15 participants. The medial elbow width and thickness of the common flexor tendon were measured on ultrasound images. RESULTS: No significant side differences in medial elbow width or common flexor tendon were found at rest or under applied valgus stress. At rest, the medial elbow joint width was 3.34±0.94 mm on the dominant side and 3.42±0.86 mm on the non-dominant side. The dominant side increased to 3.83±1.02 mm with applied valgus stress, and the non-dominant side increased to 3.96±1.04 mm. The mean flexor tendon thickness was 3.89±0.63 mm on the dominant side and 4.02±0.70 mm on the non-dominant side. CONCLUSIONS: These findings differ from similar studies in older throwing athletes, likely because of the lack of accumulated stress on the medial elbow of youth throwing athletes. Maintaining elbow stability in young throwing athletes is a vital step to preventing injury later in their careers.

8.
Commun Biol ; 5(1): 500, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35614207

RESUMEN

Little is known at the transcriptional level about microbial eukaryotic adaptations to short-term salinity change. Arctic microalgae are exposed to low salinity due to sea-ice melt and higher salinity with brine channel formation during freeze-up. Here, we investigate the transcriptional response of an ice-associated microalgae over salinities from 45 to 8. Our results show a bracketed response of differential gene expression when the cultures were exposed to progressively decreasing salinity. Key genes associated with salinity changes were involved in specific metabolic pathways, transcription factors and regulators, protein kinases, carbohydrate active enzymes, and inorganic ion transporters. The pelagophyte seemed to use a strategy involving overexpression of Na+-H+ antiporters and Na+ -Pi symporters as salinity decreases, but the K+ channel complex at higher salinities. Specific adaptation to cold saline arctic conditions was seen with differential expression of several antifreeze proteins, an ice-binding protein and an acyl-esterase involved in cold adaptation.


Asunto(s)
Microalgas , Tolerancia a la Sal , Regiones Árticas , Cubierta de Hielo , Salinidad , Tolerancia a la Sal/genética , Transcriptoma
9.
New Phytol ; 233(3): 1383-1400, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34767630

RESUMEN

We aimed to identify genomic traits of transitions to ectomycorrhizal ecology within the Boletales by comparing the genomes of 21 symbiotrophic species with their saprotrophic brown-rot relatives. Gene duplication rate is constant along the backbone of Boletales phylogeny with large loss events in several lineages, while gene family expansion sharply increased in the late Miocene, mostly in the Boletaceae. Ectomycorrhizal Boletales have a reduced set of plant cell-wall-degrading enzymes (PCWDEs) compared with their brown-rot relatives. However, the various lineages retain distinct sets of PCWDEs, suggesting that, over their evolutionary history, symbiotic Boletales have become functionally diverse. A smaller PCWDE repertoire was found in Sclerodermatineae. The gene repertoire of several lignocellulose oxidoreductases (e.g. laccases) is similar in brown-rot and ectomycorrhizal species, suggesting that symbiotic Boletales are capable of mild lignocellulose decomposition. Transposable element (TE) proliferation contributed to the higher evolutionary rate of genes encoding effector-like small secreted proteins, proteases, and lipases. On the other hand, we showed that the loss of secreted CAZymes was not related to TE activity but to DNA decay. This study provides novel insights on our understanding of the mechanisms influencing the evolutionary diversification of symbiotic boletes.


Asunto(s)
Basidiomycota , Micorrizas , Basidiomycota/genética , Evolución Biológica , Micorrizas/genética , Filogenia , Simbiosis/genética
10.
New Phytol ; 233(5): 2294-2309, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34861049

RESUMEN

The ectomycorrhizal (ECM) symbiosis has independently evolved from diverse types of saprotrophic ancestors. In this study, we seek to identify genomic signatures of the transition to the ECM habit within the hyperdiverse Russulaceae. We present comparative analyses of the genomic architecture and the total and secreted gene repertoires of 18 species across the order Russulales, of which 13 are newly sequenced, including a representative of a saprotrophic member of Russulaceae, Gloeopeniophorella convolvens. The genomes of ECM Russulaceae are characterized by a loss of genes for plant cell wall-degrading enzymes (PCWDEs), an expansion of genome size through increased transposable element (TE) content, a reduction in secondary metabolism clusters, and an association of small secreted proteins (SSPs) with TE 'nests', or dense aggregations of TEs. Some PCWDEs have been retained or even expanded, mostly in a species-specific manner. The genome of G. convolvens possesses some characteristics of ECM genomes (e.g. loss of some PCWDEs, TE expansion, reduction in secondary metabolism clusters). Functional specialization in ECM decomposition may drive diversification. Accelerated gene evolution predates the evolution of the ECM habit, indicating that changes in genome architecture and gene content may be necessary to prime the evolutionary switch.


Asunto(s)
Agaricales , Micorrizas , Agaricales/genética , Elementos Transponibles de ADN/genética , Evolución Molecular , Hábitos , Micorrizas/genética , Filogenia , Simbiosis/genética
11.
Nat Biotechnol ; 38(10): 1203-1210, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33020633

RESUMEN

Wild and weedy relatives of domesticated crops harbor genetic variants that can advance agricultural biotechnology. Here we provide a genome resource for the wild plant green millet (Setaria viridis), a model species for studies of C4 grasses, and use the resource to probe domestication genes in the close crop relative foxtail millet (Setaria italica). We produced a platinum-quality genome assembly of S. viridis and de novo assemblies for 598 wild accessions and exploited these assemblies to identify loci underlying three traits: response to climate, a 'loss of shattering' trait that permits mechanical harvest and leaf angle, a predictor of yield in many grass crops. With CRISPR-Cas9 genome editing, we validated Less Shattering1 (SvLes1) as a gene whose product controls seed shattering. In S. italica, this gene was rendered nonfunctional by a retrotransposon insertion in the domesticated loss-of-shattering allele SiLes1-TE (transposable element). This resource will enhance the utility of S. viridis for dissection of complex traits and biotechnological improvement of panicoid crops.


Asunto(s)
Genoma de Planta/genética , Mijos/genética , Proteínas de Plantas/genética , Setaria (Planta)/genética , Alelos , Sistemas CRISPR-Cas/genética , Productos Agrícolas/genética , Elementos Transponibles de ADN/genética , Domesticación , Grano Comestible/genética , Edición Génica , Genotipo , Fenotipo , Filogenia
13.
FEMS Microbiol Ecol ; 96(1)2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31769802

RESUMEN

Coniochaeta species are versatile ascomycetes that have great capacity to deconstruct lignocellulose. Here, we explore the transcriptome of Coniochaeta sp. strain 2T2.1 from wheat straw-driven cultures with the fungus growing alone or as a member of a synthetic microbial consortium with Sphingobacterium multivorum w15 and Citrobacter freundii so4. The differential expression profiles of carbohydrate-active enzymes indicated an onset of (hemi)cellulose degradation by 2T2.1 during the initial 24 hours of incubation. Within the tripartite consortium, 63 transcripts of strain 2T2.1 were differentially expressed at this time point. The presence of the two bacteria significantly upregulated the expression of one galactose oxidase, one GH79-like enzyme, one multidrug transporter, one laccase-like protein (AA1 family) and two bilirubin oxidases, suggesting that inter-kingdom interactions (e.g. amensalism) take place within this microbial consortium. Overexpression of multicopper oxidases indicated that strain 2T2.1 may be involved in lignin depolymerization (a trait of enzymatic synergism), while S. multivorum and C. freundii have the metabolic potential to deconstruct arabinoxylan. Under the conditions applied, 2T2.1 appears to be a better degrader of wheat straw when the two bacteria are absent. This conclusion is supported by the observed suppression of its (hemi)cellulolytic arsenal and lower degradation percentages within the microbial consortium.


Asunto(s)
Ascomicetos/metabolismo , Lignina/metabolismo , Consorcios Microbianos , Ascomicetos/enzimología , Ascomicetos/genética , Citrobacter freundii/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Sphingobacterium/metabolismo , Triticum/metabolismo
14.
Appl Microbiol Biotechnol ; 103(19): 8145-8155, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31482283

RESUMEN

The environmental accumulation of polycyclic aromatic hydrocarbons (PAHs) is of great concern due to potential carcinogenic and mutagenic risks, as well as their resistance to remediation. While many fungi have been reported to break down PAHs in environments, the details of gene-based metabolic pathways are not yet comprehensively understood. Specifically, the genome-scale transcriptional responses of fungal PAH degradation have rarely been reported. In this study, we report the genomic and transcriptomic basis of PAH bioremediation by a potent fungal degrader, Dentipellis sp. KUC8613. The genome size of this fungus was 36.71 Mbp long encoding 14,320 putative protein-coding genes. The strain efficiently removed more than 90% of 100 mg/l concentration of PAHs within 10 days. The genomic and transcriptomic analysis of this white rot fungus highlights that the strain primarily utilized non-ligninolytic enzymes to remove various PAHs, rather than typical ligninolytic enzymes known for playing important roles in PAH degradation. PAH removal by non-ligninolytic enzymes was initiated by both different PAH-specific and common upregulation of P450s, followed by downstream PAH-transforming enzymes such as epoxide hydrolases, dehydrogenases, FAD-dependent monooxygenases, dioxygenases, and glycosyl- or glutathione transferases. Among the various PAHs, phenanthrene induced a more dynamic transcriptomic response possibly due to its greater cytotoxicity, leading to highly upregulated genes involved in the translocation of PAHs, a defense system against reactive oxygen species, and ATP synthesis. Our genomic and transcriptomic data provide a foundation of understanding regarding the mycoremediation of PAHs and the application of this strain for polluted environments.


Asunto(s)
Basidiomycota/genética , Basidiomycota/metabolismo , Perfilación de la Expresión Génica , Genómica , Redes y Vías Metabólicas/genética , Hidrocarburos Policíclicos Aromáticos/metabolismo , Biotransformación
15.
Proc Natl Acad Sci U S A ; 116(15): 7409-7418, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30902897

RESUMEN

The evolution of complex multicellularity has been one of the major transitions in the history of life. In contrast to simple multicellular aggregates of cells, it has evolved only in a handful of lineages, including animals, embryophytes, red and brown algae, and fungi. Despite being a key step toward the evolution of complex organisms, the evolutionary origins and the genetic underpinnings of complex multicellularity are incompletely known. The development of fungal fruiting bodies from a hyphal thallus represents a transition from simple to complex multicellularity that is inducible under laboratory conditions. We constructed a reference atlas of mushroom formation based on developmental transcriptome data of six species and comparisons of >200 whole genomes, to elucidate the core genetic program of complex multicellularity and fruiting body development in mushroom-forming fungi (Agaricomycetes). Nearly 300 conserved gene families and >70 functional groups contained developmentally regulated genes from five to six species, covering functions related to fungal cell wall remodeling, targeted protein degradation, signal transduction, adhesion, and small secreted proteins (including effector-like orphan genes). Several of these families, including F-box proteins, expansin-like proteins, protein kinases, and transcription factors, showed expansions in Agaricomycetes, many of which convergently expanded in multicellular plants and/or animals too, reflecting convergent solutions to genetic hurdles imposed by complex multicellularity among independently evolved lineages. This study provides an entry point to studying mushroom development and complex multicellularity in one of the largest clades of complex eukaryotic organisms.


Asunto(s)
Agaricales , Bases de Datos de Ácidos Nucleicos , Cuerpos Fructíferos de los Hongos , Proteínas Fúngicas , Genes Fúngicos , Transcriptoma/fisiología , Agaricales/genética , Agaricales/crecimiento & desarrollo , Cuerpos Fructíferos de los Hongos/genética , Cuerpos Fructíferos de los Hongos/crecimiento & desarrollo , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica/fisiología
16.
Sci Rep ; 8(1): 6321, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29679020

RESUMEN

Dark septate endophytes (DSE) are a form-group of root endophytic fungi with elusive functions. Here, the genomes of two common DSE of semiarid areas, Cadophora sp. and Periconia macrospinosa were sequenced and analyzed with another 32 ascomycetes of different lifestyles. Cadophora sp. (Helotiales) and P. macrospinosa (Pleosporales) have genomes of 70.46 Mb and 54.99 Mb with 22,766 and 18,750 gene models, respectively. The majority of DSE-specific protein clusters lack functional annotation with no similarity to characterized proteins, implying that they have evolved unique genetic innovations. Both DSE possess an expanded number of carbohydrate active enzymes (CAZymes), including plant cell wall degrading enzymes (PCWDEs). Those were similar in three other DSE, and contributed a signal for the separation of root endophytes in principal component analyses of CAZymes, indicating shared genomic traits of DSE fungi. Number of secreted proteases and lipases, aquaporins, and genes linked to melanin synthesis were also relatively high in our fungi. In spite of certain similarities between our two DSE, we observed low levels of convergence in their gene family evolution. This suggests that, despite originating from the same habitat, these two fungi evolved along different evolutionary trajectories and display considerable functional differences within the endophytic lifestyle.


Asunto(s)
Ascomicetos/genética , Endófitos/metabolismo , Hongos/genética , Hongos/metabolismo , Genómica/métodos , Micorrizas/genética , Raíces de Plantas/microbiología , Poaceae/microbiología
17.
Nat Ecol Evol ; 1(10): 1585, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29185503

RESUMEN

In Fig. 5 of the version of this Article originally published, the final number on the x axes of each panel was incorrectly written as 1.5; it should have read 7.5. This has now been corrected in all versions of the Article.

18.
Nat Ecol Evol ; 1(5): 119, 2017 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-28812690

RESUMEN

Fixed chromosomal inversions can reduce gene flow and promote speciation in two ways: by suppressing recombination and by carrying locally favoured alleles at multiple loci. However, it is unknown whether favoured mutations slowly accumulate on older inversions or if young inversions spread because they capture pre-existing adaptive quantitative trait loci (QTLs). By genetic mapping, chromosome painting and genome sequencing, we have identified a major inversion controlling ecologically important traits in Boechera stricta. The inversion arose since the last glaciation and subsequently reached local high frequency in a hybrid speciation zone. Furthermore, the inversion shows signs of positive directional selection. To test whether the inversion could have captured existing, linked QTLs, we crossed standard, collinear haplotypes from the hybrid zone and found multiple linked phenology QTLs within the inversion region. These findings provide the first direct evidence that linked, locally adapted QTLs may be captured by young inversions during incipient speciation.

19.
Biotechnol Biofuels ; 10: 149, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28616073

RESUMEN

BACKGROUND: Pectin is an abundant component in many fruit and vegetable wastes and could therefore be an excellent resource for biorefinery, but is currently underutilized. Fungal pectinases already play a crucial role for industrial purposes, such as for foodstuff processing. However, the regulation of pectinase gene expression is still poorly understood. For an optimal utilization of plant biomass for biorefinery and biofuel production, a detailed analysis of the underlying regulatory mechanisms is warranted. In this study, we applied the genetic resources of the filamentous ascomycete species Neurospora crassa to screen for transcription factors that play a major role in pectinase induction. RESULTS: The pectin degradation regulator-1 (PDR-1) was identified through a transcription factor mutant screen in N. crassa. The Δpdr-1 mutant exhibited a severe growth defect on pectin and all tested pectin-related poly- and monosaccharides. Biochemical as well as transcriptional analyses of WT and the Δpdr-1 mutant revealed that while PDR-1-mediated gene induction was dependent on the presence of l-rhamnose, it also strongly affected the degradation of the homogalacturonan backbone. The expression of the endo-polygalacturonase gh28-1 was greatly reduced in the Δpdr-1 mutant, while the expression levels of all pectate lyase genes increased. Moreover, a pdr-1 overexpression strain displayed substantially increased pectinase production. Promoter analysis of the PDR-1 regulon allowed refinement of the putative PDR-1 DNA-binding motif. CONCLUSIONS: PDR-1 is highly conserved in filamentous ascomycete fungi and is present in many pathogenic and industrially important fungi. Our data demonstrate that the function of PDR-1 in N. crassa combines features of two recently described transcription factors in Aspergillus niger (RhaR) and Botrytis cinerea (GaaR). The results presented in this study contribute to a broader understanding of how pectin degradation is orchestrated in filamentous fungi and how it could be manipulated for optimized pectinase production.

20.
G3 (Bethesda) ; 7(6): 1775-1789, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28450370

RESUMEN

Divergence of breeding system plays an important role in fungal speciation. Ectomycorrhizal fungi, however, pose a challenge for the study of reproductive biology because most cannot be mated under laboratory conditions. To overcome this barrier, we sequenced the draft genomes of the ectomycorrhizal sister species Rhizopogon vinicolor Smith and Zeller and R. vesiculosus Smith and Zeller (Basidiomycota, Boletales)-the first genomes available for Basidiomycota truffles-and characterized gene content and organization surrounding their mating type loci. Both species possess a pair of homeodomain transcription factor homologs at the mating type A-locus as well as pheromone receptor and pheromone precursor homologs at the mating type B-locus. Comparison of Rhizopogon genomes with genomes from Boletales, Agaricales, and Polyporales revealed synteny of the A-locus region within Boletales, but several genomic rearrangements across orders. Our findings suggest correlation between gene content at the B-locus region and breeding system in Boletales with tetrapolar species possessing more diverse gene content than bipolar species. Rhizopogon vinicolor possesses a greater number of B-locus pheromone receptor and precursor genes than R. vesiculosus, as well as a pair of isoprenyl cysteine methyltransferase genes flanking the B-locus compared to a single copy in R. vesiculosus Examination of dikaryotic single nucleotide polymorphisms within genomes revealed greater heterozygosity in R. vinicolor, consistent with increased rates of outcrossing. Both species possess the components of a heterothallic breeding system with R. vinicolor possessing a B-locus region structure consistent with tetrapolar Boletales and R. vesiculosus possessing a B-locus region structure intermediate between bipolar and tetrapolar Boletales.


Asunto(s)
Basidiomycota/genética , Genes del Tipo Sexual de los Hongos , Genoma Fúngico , Genómica , Micorrizas/genética , Basidiomycota/clasificación , Mapeo Cromosómico , Biología Computacional/métodos , Estudio de Asociación del Genoma Completo , Genómica/métodos , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Micorrizas/clasificación , Filogenia , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Sintenía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...