Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
MicroPubl Biol ; 20222022.
Artículo en Inglés | MEDLINE | ID: mdl-35685275

RESUMEN

Peach ( Prunus persica ) trees with a mutation in the weep gene exhibit a weeping branch phenotype. In contrast, Arabidopsis ( Arabidopsis thaliana ) weep mutants do not have a shoot architecture phenotype. A recent report revealed that barley ( Hordeum vulgare ) and wheat ( Triticum aestivum ) with mutations in EGT2, a WEEP homolog, have steeper root angles than standard varieties. We investigated the root architecture of three Arabidopsis weep mutant lines. All three lines exhibited steeper root angles and a smaller convex hull area, indicating that the total area explored by the root system is reduced. These results reveal WEEP is important for regulating lateral root angles in a dicot.

2.
Front Plant Sci ; 9: 626, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29868082

RESUMEN

Stress information received by a particular local plant tissue is transferred to other tissues and neighboring plants, but how the information travels is not well understood. Application of Alternaria Brassicae spores to Arabidopsis leaves or roots stimulates local accumulation of jasmonic acid (JA), the expression of JA-responsive genes, as well as of NITRATE TRANSPORTER (NRT)2.5 and REDOX RESPONSIVE TRANSCRIPTION FACTOR1 (RRTF1). Infection information is systemically spread over the entire seedling and propagates radially from infected to non-infected leaves, axially from leaves to roots, and vice versa. The local and systemic NRT2.5 responses are reduced in the jar1 mutant, and the RRTF1 response in the rbohD mutant. Information about A. brassicae infection travels slowly to uninfected neighboring plants via a Piriformospora Indica hyphal network, where NRT2.5 and RRTF1 are up-regulated. The systemic A. brassicae-induced JA response in infected plants is converted to an abscisic acid (ABA) response in the neighboring plant where ABA and ABA-responsive genes are induced. We propose that the local threat information induced by A. brassicae infection is spread over the entire plant and transferred to neighboring plants via a P. indica hyphal network. The JA-specific response is converted to a general ABA-mediated stress response in the neighboring plant.

3.
Plant Physiol ; 176(3): 2496-2514, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29371249

RESUMEN

Piriformospora indica, an endophytic root-colonizing fungus, efficiently promotes plant growth and induces resistance to abiotic stress and biotic diseases. P. indica fungal cell wall extract induces cytoplasmic calcium elevation in host plant roots. Here, we show that cellotriose (CT) is an elicitor-active cell wall moiety released by P. indica into the medium. CT induces a mild defense-like response, including the production of reactive oxygen species, changes in membrane potential, and the expression of genes involved in growth regulation and root development. CT-based cytoplasmic calcium elevation in Arabidopsis (Arabidopsis thaliana) roots does not require the BAK1 coreceptor or the putative Ca2+ channels TPC1, GLR3.3, GLR2.4, and GLR2.5 and operates synergistically with the elicitor chitin. We identified an ethyl methanesulfonate-induced mutant (cytoplasmiccalcium elevation mutant) impaired in the response to CT and various other cellooligomers (n = 2-7), but not to chitooligomers (n = 4-8), in roots. The mutant contains a single nucleotide exchange in the gene encoding a poly(A) ribonuclease (AtPARN; At1g55870) that degrades the poly(A) tails of specific mRNAs. The wild-type PARN cDNA, expressed under the control of a 35S promoter, complements the mutant phenotype. Our identification of cellotriose as a novel chemical mediator casts light on the complex P. indica-plant mutualistic relationship.


Asunto(s)
Arabidopsis/microbiología , Basidiomycota/fisiología , Celulosa/metabolismo , Exorribonucleasas/metabolismo , Simbiosis/fisiología , Triosas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Exorribonucleasas/genética , Regulación de la Expresión Génica de las Plantas , Mutación , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Plantones/metabolismo , Plantones/microbiología , Transducción de Señal
4.
J Plant Physiol ; 167(12): 1009-17, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20471134

RESUMEN

Piriformospora indica, a root-colonizing endophytic fungus of Sebacinales, promotes plant growth and confers resistance against biotic and abiotic stress. The fungus strongly colonizes the roots of Chinese cabbage, promotes root and shoot growth, and promotes lateral root formation. When colonized plants were exposed to polyethylene glycol to mimic drought stress, the activities of peroxidases, catalases and superoxide dismutases in the leaves were upregulated within 24h. The fungus retarded the drought-induced decline in the photosynthetic efficiency and the degradation of chlorophylls and thylakoid proteins. The expression levels of the drought-related genes DREB2A, CBL1, ANAC072 and RD29A were upregulated in the drought-stressed leaves of colonized plants. Furthermore, the CAS mRNA level for the thylakoid membrane associated Ca(2+)-sensing regulator and the amount of the CAS protein increased. We conclude that antioxidant enzyme activities, drought-related genes and CAS are three crucial targets of P. indica in Chinese cabbage leaves during the establishment of drought tolerance. P. indica-colonized Chinese cabbage provides a good model system to study root-to-shoot communication.


Asunto(s)
Adaptación Fisiológica/genética , Basidiomycota/fisiología , Brassica/genética , Proteínas de Unión al Calcio/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Adaptación Fisiológica/efectos de los fármacos , Antioxidantes/metabolismo , Basidiomycota/efectos de los fármacos , Biomarcadores/metabolismo , Biomasa , Brassica/citología , Brassica/enzimología , Brassica/microbiología , Proteínas de Unión al Calcio/genética , China , Recuento de Colonia Microbiana , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Malondialdehído/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Fotosíntesis/genética , Hojas de la Planta/citología , Hojas de la Planta/enzimología , Hojas de la Planta/microbiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Plastidios/efectos de los fármacos , Plastidios/genética , Plastidios/metabolismo , Polietilenglicoles/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...