Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Nat Plants ; 4(9): 699-710, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30082764

RESUMEN

In plants and animals, nucleotide-binding leucine-rich repeat (NLR) proteins serve as intracellular immune receptors. Defence signalling by NLRs often requires the formation of NLR heteropairs. Our knowledge of the molecular mechanism regulating this process is limited. In a reverse genetic screen to identify the partner of the Arabidopsis typical NLR, SUPRESSOR OF NPR1, CONSTITUTIVE 1 (SNC1), we discovered three NLRs that are redundantly required for SNC1-mediated defence, which were named SIDEKICK SNC1 1 (SIKIC1), SIKIC2 and SIKIC3. Immunoprecipitation-mass spectrometry analyses revealed that SIKIC2 physically associates with SNC1. We also uncovered that the protein level of SIKIC2 is under the control of two previously uncharacterized redundant E3 ubiquitin ligases MUSE1 and MUSE2. As SNC1 accumulation has previously been shown to be regulated by the E3 ubiquitin ligase SCFCPR1, this report provides evidence that the homeostasis of individual components of partnered typical NLRs is subjected to differential regulation via ubiquitin-mediated protein degradation.


Asunto(s)
Proteínas NLR/metabolismo , Inmunidad de la Planta , Ubiquitina-Proteína Ligasas/fisiología , Arabidopsis/inmunología , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Proteínas NLR/fisiología , Inmunidad de la Planta/fisiología , Ubiquitina-Proteína Ligasas/metabolismo
2.
Plant Cell ; 29(10): 2626-2643, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28947490

RESUMEN

In Arabidopsis thaliana, the MOS4-ASSOCIATED COMPLEX (MAC) is required for defense and development. The evolutionarily conserved, putative RNA helicase MAC7 is a component of the Arabidopsis MAC, and the human MAC7 homolog, Aquarius, is implicated in pre-mRNA splicing. Here, we show that mac7-1, a partial loss-of-function mutant in MAC7, and two other MAC subunit mutants, mac3a mac3b and prl1 prl2 (pleiotropic regulatory locus), exhibit reduced microRNA (miRNA) levels, indicating that MAC promotes miRNA biogenesis. The mac7-1 mutant shows reduced primary miRNA (pri-miRNA) levels without affecting miRNA gene (MIR) promoter activity or the half-life of pri-miRNA transcripts. As a nuclear protein, MAC7 is not concentrated in dicing bodies, but it affects the localization of HYPONASTIC LEAVES1 (HYL1), a key protein in pri-miRNA processing, to dicing bodies. Immunoprecipitation of HYL1 retrieved 11 known MAC subunits, including MAC7, indicating association between HYL1 and MAC. We propose that MAC7 links MIR transcription to pri-miRNA processing. RNA-seq analysis showed that downregulated genes in MAC subunit mutants are mostly involved in plant defense and stimulus responses, confirming a role of MAC in biotic and abiotic stress responses. We also discovered global intron retention defects in mutants in three subunits of MAC, thus linking MAC function to splicing in Arabidopsis.


Asunto(s)
Arabidopsis/metabolismo , MicroARNs/metabolismo , Empalme del ARN/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética
3.
Plant J ; 89(6): 1174-1183, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28004865

RESUMEN

Stringent modulation of immune signaling in plants is necessary to enable a rapid response to pathogen attack without spurious defense activation. To identify genes involved in plant immunity, a forward genetic screen for enhancers of the autoimmune snc1 (suppressor of npr1, constitutive 1) mutant was conducted. The snc1 mutant contains a gain-of-function mutation in a gene encoding a NOD-like receptor (NLR) protein. The isolated muse7 (mutant, snc1-enhancing, 7) mutant was shown to confer a reversion to autoimmune phenotypes in the wild-type-like mos4 (modifier of snc1, 4) snc1 background. Positional cloning revealed that MUSE7 encodes an evolutionarily conserved putative kinase substrate of unknown function. The muse7 single mutants display enhanced resistance to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. While transcription of SNC1 is not enhanced, elevated SNC1 protein accumulation is associated with mutations in muse7. Accumulation of two additional NLR proteins, RPS2 (RESISTANCE TO PSEUDOMONAS SYRINGAE 2) and RPM1 (RESISTANCE TO PSEUDOMONAS SYRINGAE pv. MACULICOLA 1), was also observed in muse7 plants. Although proteasome-mediated degradation of NLR proteins is a well studied event in plant immunity, no interactions were detected between MUSE7 and selected components of this pathway. This study has demonstrated a role for MUSE7 in modulating plant immune responses through negatively affecting NLR accumulation, and will benefit future studies of MUSE7 homologs in other species.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas NLR/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Mutación , Proteínas NLR/genética , Inmunidad de la Planta/genética , Inmunidad de la Planta/fisiología , Plantas Modificadas Genéticamente/genética
4.
J Exp Bot ; 67(8): 2219-30, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26865731

RESUMEN

Plants employ five DNA-dependent RNA polymerases (Pols) in transcription. One of these polymerases, Pol III, has previously been reported to transcribe 5S rRNA, tRNAs, and a number of small RNAs. However, in-depth functional analysis is complicated by the fact that knockout mutations in Pol subunits are typically lethal. Here, we report the characterization of the first known viable Pol III subunit mutant,nrpc7-1 This mutant was originally isolated from a forward genetic screen designed to identify enhancers of the autoimmune mutantsnc1, which contains a gain-of-function mutation in a nucleotide-binding leucine-rich repeat (NLR) immune receptor-encoding gene. Thenrpc7-1mutation occurs in an intron-exon splice site and results in intron retention in someNRPC7transcripts. There is a global disruption in RNA equilibrium innrpc7-1, exemplified by the altered expression of a number of RNA molecules, some of which are not reported to be transcribed by Pol III. There are developmental defects associated with the mutation, as homozygous mutant plants are dwarf, have stunted roots and siliques, and possess serrated leaves. These defects are possibly due to altered small RNA stability or activity. Additionally, thenrpc7-1mutation confers anNLR-specific alternative splicing defect that correlates with enhanced disease resistance, highlighting the importance of alternative splicing in regulating NLR activity. Altogether, these results reveal novel roles for Pol III in maintaining RNA homeostasis, adjusting the expression of a diverse suite of genes, and indirectly modulating gene splicing. Future analyses using thenrpc7-1mutant will be instrumental in examining other unknown Pol III functions.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/enzimología , Arabidopsis/genética , Pleiotropía Genética , Mutación/genética , Subunidades de Proteína/genética , ARN Polimerasa III/genética , Arabidopsis/inmunología , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Núcleo Celular/metabolismo , Cromosomas de las Plantas/genética , Clonación Molecular , Inmunidad de la Planta , Subunidades de Proteína/metabolismo , ARN Polimerasa III/metabolismo , Empalme del ARN/genética , ARN de Planta/metabolismo , Fracciones Subcelulares/metabolismo
5.
Plant Cell Physiol ; 56(8): 1616-23, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26063389

RESUMEN

SNC1 (SUPPRESSOR OF NPR1, CONSTITUTIVE 1) is one of a suite of intracellular Arabidopsis NOD-like receptor (NLR) proteins which, upon activation, result in the induction of defense responses. However, the molecular mechanisms underlying NLR activation and the subsequent provocation of immune responses are only partially characterized. To identify negative regulators of NLR-mediated immunity, a forward genetic screen was undertaken to search for enhancers of the dwarf, autoimmune gain-of-function snc1 mutant. To avoid lethality resulting from severe dwarfism, the screen was conducted using mos4 (modifier of snc1, 4) snc1 plants, which display wild-type-like morphology and resistance. M2 progeny were screened for mutant, snc1-enhancing (muse) mutants displaying a reversion to snc1-like phenotypes. The muse9 mos4 snc1 triple mutant was found to exhibit dwarf morphology, elevated expression of the pPR2-GUS defense marker reporter gene and enhanced resistance to the oomycete pathogen Hyaloperonospora arabidopsidis Noco2. Via map-based cloning and Illumina sequencing, it was determined that the muse9 mutation is in the gene encoding the SWI/SNF chromatin remodeler SYD (SPLAYED), and was thus renamed syd-10. The syd-10 single mutant has no observable alteration from wild-type-like resistance, although the syd-4 T-DNA insertion allele displays enhanced resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola ES4326. Transcription of SNC1 is increased in both syd-4 and syd-10. These data suggest that SYD plays a subtle, specific role in the regulation of SNC1 expression and SNC1-mediated immunity. SYD may work with other proteins at the chromatin level to repress SNC1 transcription; such regulation is important for fine-tuning the expression of NLR-encoding genes to prevent unpropitious autoimmunity.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ensamble y Desensamble de Cromatina , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/inmunología , Adenosina Trifosfatasas/metabolismo , Alelos , Secuencia de Aminoácidos , Arabidopsis/inmunología , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Genes Reporteros , Modelos Biológicos , Mutagénesis Insercional , Oomicetos/fisiología , Fenotipo , Inmunidad de la Planta , Plantas Modificadas Genéticamente , Pseudomonas syringae/fisiología , Plantones/genética , Plantones/inmunología , Análisis de Secuencia de ADN
6.
Front Plant Sci ; 2: 71, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22639607

RESUMEN

In order to defend against microbial infection, plants employ a complex immune system that relies partly on resistance (R) proteins that initiate intricate signaling cascades upon pathogen detection. The resistance signaling network utilized by plants is only partially characterized. A genetic screen conducted to identify novel defense regulators involved in this network resulted in the isolation of the snc6-1D mutant. Positional cloning revealed that this mutant contained a molecular lesion in the chilling sensitive 3 (CHS3) gene, thus the allele was renamed chs3-2D. CHS3 encodes a TIR-NB-LRR R protein that contains a C-terminal zinc-binding LIM (Lin-11, Isl-1, Mec-3) domain. Although this protein has been previously implicated in cold stress and defense response, the role of the LIM domain in modulating protein activity is unclear. The chs3-2D allele contains a G to A point mutation causing a C1340 to Y1340 substitution close to the LIM domain. It encodes a dominant gain-of-function mutation. The chs3-2D mutant is severely stunted and displays curled leaf morphology. Additionally, it constitutively expresses PATHOGENESIS-RELATED (PR) genes, accumulates salicylic acid, and shows enhanced resistance to the virulent oomycete isolate Hyaloperonospora arabidopsidis (H.a.) Noco2. Subcellular localization assays using GFP fusion constructs indicate that both CHS3 and chs3-2D localize to the nucleus. A third chs3 mutant allele, chs3-3D, was identified in an unrelated genetic screen in our lab. This allele contains a C to T point mutation resulting in an M1017 to V1017 substitution in the LRR-LIM linker region. Additionally, a chs3-2D suppressor screen identified two revertant alleles containing secondary mutations that abolish the mutant morphology. Analysis of the locations of these molecular lesions provides support for the hypothesis that the LIM domain represses CHS3 R-like protein activity. This repression may occur through either autoinhibition or binding of a negative defense regulator.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA