Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Clin Infect Dis ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38356144

RESUMEN

COVID-19 epidemiology and product landscapes have changed considerably since onset of the pandemic. Safe and effective vaccines and therapeutics are available, but the continual emergence of SARS-CoV-2 variants introduce limitations in our ability to prevent and treat disease. Project NextGen is a collaboration between the Biomedical Advanced Research and Development Authority (BARDA), part of the Administration for Strategic Preparedness and Response (ASPR), and the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, that is leveraging public-private partnerships to address gaps in the nation's COVID-19 vaccine and therapeutic capabilities. Targeted investments will advance promising next-generation candidates through the most difficult phases of clinical development to encourage further private sector interest for later stage development and commercial availability. New commercial vaccines and therapeutics that are more durable and effective across variants will improve our fight against COVID-19 and transform our response to future threats.

2.
J Infect Dis ; 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38244206

RESUMEN

Infectious disease outbreaks have become increasingly common and require global partnership for adequate preparedness and response. During outbreaks, medical countermeasures (MCMs)-vaccines, therapeutics, and diagnostics-need to reach patients quickly. BARDA utilizes public-private partnerships to support advanced development of MCMs through U.S. FDA approval against a variety of threats within its mission space. MCM preparedness and response must be approached as an integrated life cycle, not as independent steps. Recent filovirus outbreaks in Africa exemplify that collaborative relationships are critical for emergency response, and products with regulatory approval can expand access and reach patients quicker than investigational products. Unfortunately, insufficient funding globally and differences in funders' prioritization puts gains and future efforts at risk. Of primary concern is a) lack of a feasible regulatory path and clinical capability to achieve regulatory approval for new MCMs for many diseases; and b) the need for partners with the mandate, funding, and capabilities to support the life cycle activities following development-long-term sustainment of manufacturing capability and stockpiling of licensed products to support international outbreaks. Finding partners that complement BARDA's mission and support the MCM life cycle will be a key component in deciding which MCM development efforts can be supported. Without collaboration, the global community runs the risk of losing the capabilities built through years of investment and being underprepared to combat future threats. Synergies between funders that have different roles and responsibilities within the MCM life cycle are critical to MCM availability and create long-term sustainment of products to ensure access.

4.
Hum Vaccin Immunother ; 18(6): 2129930, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36302122

RESUMEN

The COVID-19 pandemic profoundly disrupted, and, out of necessity, accelerated innovation of research and development of medical countermeasures to combat COVID-19. Although countermeasures were developed with unprecedented speed as a result of decades of long-term Federal investments in platform technologies and existing partnerships, the pandemic also revealed gaps in our preparedness and response capabilities that threaten our readiness posture. Challenges include limited federal funding that hinders sustainable development and manufacturing of, and equitable access to, medical countermeasures. Here we discuss lessons learned from the development and production efforts of medical countermeasures, such as vaccines and immunotherapeutics, to combat COVID-19. This commentary highlights some of the key gaps and challenges that must be addressed to ensure preparation for future outbreaks caused by viruses of pandemic potential.


Asunto(s)
COVID-19 , Vacunas , Humanos , Pandemias/prevención & control , COVID-19/prevención & control , Brotes de Enfermedades/prevención & control
5.
PLoS One ; 17(9): e0257779, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36137088

RESUMEN

The eyes of insects display an incredible diversity of adaptations to enhance vision across the gamut of light levels that they experience. One commonly studied contrast is the difference in eye structure between nocturnal and diurnal species, with nocturnal species typically having features that enhance eye sensitivity such as larger eyes, larger eye facets, and larger ocelli. In this study, we compared eye structure between workers of closely related nocturnal and diurnal above ground foraging ant species (Hymenoptera: Formicidae) in four genera (Myrmecocystus, Aphaenogaster, Temnothorax, Veromessor). In all four genera, nocturnal species tend to have little cuticular pigment (pale), while diurnal species are heavily pigmented (dark), hence we could use cuticle coloration as a surrogate for activity pattern. Across three genera (Myrmecocystus, Aphaenogaster, Temnothorax), pale species, as expected for nocturnally active animals, had larger eyes, larger facet diameters, and larger visual spans compared to their dark, more day active congeners. This same pattern occurred for one pale species of Veromessor, but not the other. There were no consistent differences between nocturnal and diurnal species in interommatidial angles and eye parameters both within and among genera. Hence, the evolution of eye features that enhance sensitivity in low light levels do not appear to have consistent correlated effects on features related to visual acuity. A survey across several additional ant genera found numerous other pale species with enlarged eyes, suggesting these traits evolved multiple times within and across genera. We also compared the size of the anterior ocellus in workers of pale versus dark species of Myrmecocystus. In species with larger workers, the anterior ocellus was smaller in pale than in dark species, but this difference mostly disappeared for species with smaller workers. Presence of the anterior ocellus also was size-dependent in the two largest pale species.


Asunto(s)
Hormigas , Adaptación Fisiológica , Animales , Ojo , Visión Ocular , Agudeza Visual
6.
Sci Adv ; 8(31): eabp9908, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35921404

RESUMEN

Invertebrates constitute the majority of animal species and are critical for ecosystem functioning and services. Nonetheless, global invertebrate biodiversity patterns and their congruences with vertebrates remain largely unknown. We resolve the first high-resolution (~20-km) global diversity map for a major invertebrate clade, ants, using biodiversity informatics, range modeling, and machine learning to synthesize existing knowledge and predict the distribution of undiscovered diversity. We find that ants and different vertebrate groups have distinct features in their patterns of richness and rarity, underscoring the need to consider a diversity of taxa in conservation. However, despite their phylogenetic and physiological divergence, ant distributions are not highly anomalous relative to variation among vertebrate clades. Furthermore, our models predict that rarity centers largely overlap (78%), suggesting that general forces shape endemism patterns across taxa. This raises confidence that conservation of areas important for small-ranged vertebrates will benefit invertebrates while providing a "treasure map" to guide future discovery.


Asunto(s)
Hormigas , Animales , Hormigas/fisiología , Biodiversidad , Ecosistema , Invertebrados , Filogenia , Vertebrados
7.
Zootaxa ; 5206(1): 1-115, 2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37045410

RESUMEN

This paper provides a taxonomic revision and a review of the biology for the 10 species of North American seed-harvester ants in the genus Veromessor. Two new synonomies are proposed: V. julianus subsp. clarior W.M. Wheeler and Creighton 1934 new synonym and V. julianus subsp. manni W.M. Wheeler and Creighton 1934 new synonym are synonomized under V. julianus (Pergande, 1894). One new species is described: V. pseudolariversi new species (worker, queen, male), as a result of splitting V. lariversi Smith into two species based on morphological and genetic differences. We also diagnose previously undescribed queens and males for the following species: V. andrei (male), V. chamberlini (queen, male), V. chicoensis (queen, male), V. julianus (queen, male), and V. stoddardi (queen, male). Information on biology of each species is summarized, along with distribution maps and keys to workers, queens, and males. We then discuss the biology for species of Veromessor, focusing on several morphological and ecological traits that display strong variation across the relatively low number of species (10) in the genus. Morphological traits include degree of psammophore development, propodeal spine length, eye size and structure, and worker polymorphism and worker body size, while ecological traits include colony size and foraging method, seasonality of mating flights, mating frequency, and queen size and colony founding strategy.


Asunto(s)
Hormigas , Animales , Masculino , Hormigas/genética , Biología , Tamaño Corporal , Tamaño de los Órganos
8.
Zootaxa ; 5033(1): 1-230, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34811105

RESUMEN

This paper provides a taxonomic revision and reviews natural history for 35 South American species of the seed-harvesting ant genus Pogonomyrmex. Species treated herein mostly comprise the P. rastratus-group; four species are revived from synonomy, three taxa are elevated from subspecies to species, five taxa are synonymized, and 20 new species are described. The following taxa are revived from synonomy: P. intermedia Menozzi, P. semistriata Emery, P. spinolae Emery, and P. weiseri Santschi. The following taxa are raised from subspecies to species: P. leonis Kusnezov, P. pulchellus Santschi, and P. sanmartini Kusnezov. The following new synonymies are proposed, with the senior synonym listed first, and the junior synonym(s) in parentheses: P. carbonarius Mayr (= P. kusnezovi Cuezzo Claver, = P. weiseri var. neuquensis Santschi, = P. variabilis Santschi); P. vermiculatus Emery (= P. vermiculatus var. chubutensis Forel, = P. vermiculatus var. jorgenseni Forel). The following new species are described: P. apterogenos, P. araucania, P. atacama, P. bolivianus, P. colca, P. cusquena, P. excelsior, P. forelii, P. granulatus, P. lagunabravensis, P. loaensis, P. mapuche, P. maulensis, P. pichachen, P. propinqua, P. santschii, P. strioligaster, P. tafi, P. varicolor, and P. wilsoni. One species treated herein has brachypterous queens (P. atacama), one species has dimorphic queens (winged and brachypterous in P. longibarbis), and two species have ergatoid (permanently wingless) queens and ergatoid males (P. apterogenos, P. laguanbravensis); the latter two are the only known ant species in which both sexual castes are only ergatoid. I also provide keys for workers and queens (in English and Spanish), diagnoses for males, photographs of known castes, distribution maps, and a summary of known biology.


Asunto(s)
Hormigas , Gorgojos , Animales , Hispánicos o Latinos , Humanos , Masculino , Clase Social
9.
Nat Commun ; 12(1): 2188, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33846321

RESUMEN

Unprecedented public health interventions including travel restrictions and national lockdowns have been implemented to stem the COVID-19 epidemic, but the effectiveness of non-pharmaceutical interventions is still debated. We carried out a phylogenetic analysis of more than 29,000 publicly available whole genome SARS-CoV-2 sequences from 57 locations to estimate the time that the epidemic originated in different places. These estimates were examined in relation to the dates of the most stringent interventions in each location as well as to the number of cumulative COVID-19 deaths and phylodynamic estimates of epidemic size. Here we report that the time elapsed between epidemic origin and maximum intervention is associated with different measures of epidemic severity and explains 11% of the variance in reported deaths one month after the most stringent intervention. Locations where strong non-pharmaceutical interventions were implemented earlier experienced much less severe COVID-19 morbidity and mortality during the period of study.


Asunto(s)
COVID-19/diagnóstico , Control de Enfermedades Transmisibles/métodos , Filogenia , Filogeografía/métodos , SARS-CoV-2/genética , COVID-19/epidemiología , COVID-19/virología , Epidemias , Humanos , Salud Pública/métodos , Salud Pública/estadística & datos numéricos , SARS-CoV-2/clasificación , SARS-CoV-2/fisiología , Índice de Severidad de la Enfermedad
10.
NPJ Vaccines ; 6(1): 41, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33741987

RESUMEN

An unprecedented number of human infections with avian influenza A(H7N9) in the fifth epidemic wave during the winter of 2016-2017 in China and their antigenic divergence from the viruses that emerged in 2013 prompted development of updated vaccines for pandemic preparedness. We report on the findings of a clinical study in healthy adults designed to evaluate the safety and immunogenicity of three dose levels of recombinant influenza vaccine derived from highly pathogenic A/Guangdong/17SF003/2016 (H7N9) virus adjuvanted with AS03 or MF59 oil-in water emulsions. Most of the six study groups meet the FDA CBER-specified vaccine licensure criterion of 70% seroprotection rate (SPR) for hemagglutination inhibition antibodies to the homologous virus. A substantial proportion of subjects show high cross-reactivity to antigenically distinct heterologous A(H7N9) viruses from the first epidemic wave of 2013. These results provide critical information to develop a pandemic response strategy and support regulatory requirements for vaccination under Emergency Use Authorization.

11.
Expert Rev Vaccines ; 20(3): 235-242, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33576708

RESUMEN

Introduction. Timely availability of effective influenza vaccine will be critical to mitigate the next influenza pandemic. The mission of Biomedical Advanced Research and Development Authority (BARDA) is to develop medical countermeasures against pandemics, including influenza and other health security threats.Areas covered. Despite considerable gains in pandemic vaccine preparedness since 2009, old and new challenges threaten the pandemic influenza response capabilities of the U.S. Government: insufficient U.S.-based vaccine production, two-dose vaccination regimen, logistically complex adjuvanted formulation, and sustained surge manufacturing capacity despite no commercial market for pandemic vaccines. Although the coronavirus disease 2019 (COVID-19) pandemic has re-exposed these gaps in preparedness and response, previous investments into flexible influenza vaccine technologies proved to be critical to accelerate COVID-19 vaccine development.Expert opinion. BARDA addresses these challenges by implementing a pandemic influenza vaccine strategy with two key goals: 1) accelerating vaccine development and production (faster) and 2) improving vaccine performance (better). This strategy involves an end-to-end approach, including increasing manufacturing and fill-finish capacity; improving release testing speed; and funding clinical trials to improve current vaccine utilization. As demonstrated by the COVID-19 response, continued investments into this pandemic influenza vaccine strategy will further enhance the ability to respond to future emerging pandemic pathogens.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , Vacunas contra la Influenza/administración & dosificación , Gripe Humana/prevención & control , COVID-19/epidemiología , Desarrollo de Medicamentos , Humanos , Factores de Tiempo , Vacunación
12.
Ecol Evol ; 11(1): 294-308, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33437430

RESUMEN

The desert harvester ant Veromessor pergandei displays geographic variation in colony founding with queens initiating nests singly (haplometrosis) or in groups (pleometrosis). The transition from haplo- to pleometrotic founding is associated with lower rainfall. Numerous hypotheses have been proposed to explain the evolution of cooperative founding in this species, but the ultimate explanation remains unanswered. In laboratory experiments, water level was positively associated with survival, condition, and brood production by single queens. Queen survival also was positively influenced by water level and queen number in a two-factor experiment. Water level also was a significant effect for three measures of queen condition, but queen number was not significant for any measure. Foundress queens excavated after two weeks of desiccating conditions were dehydrated compared to alate queens captured from their natal colony, indicating that desiccation can be a source of queen mortality. Long-term monitoring in central Arizona, USA, documented that recruitment only occurred in four of 20 years. A discriminant analysis using rainfall as a predictor of recruitment correctly predicted recruitment in 17 of 20 years for total rainfall from January to June (the period for mating flights and establishment) and in 19 of 20 years for early plus late rainfall (January-March and April-June, respectively), often with a posterior probability > 0.90. Moreover, recruitment occurred only in years in which both early and late rainfall exceeded the long-term mean. This result also was supported by the discriminant analysis predicting no recruitment when long-term mean early and late rainfall were included as ungrouped periods. These data suggest that pleometrosis in V. pergandei evolved to enhance colony survival in areas with harsh abiotic (desiccating) conditions, facilitating colonization of habitats in which solitary queens could not establish even in wet years. This favorable-year hypothesis supports enhanced worker production as the primary advantage of pleometrosis.

13.
Clin Transl Immunology ; 10(1): e1239, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33505681

RESUMEN

OBJECTIVES: Francisella tularensis, the causative agent of tularaemia, is an exceptionally infectious bacterium, potentially fatal for humans if left untreated and with the potential to be developed as a bioweapon. Both natural infection and live-attenuated vaccine strain (LVS) confer good protection against tularaemia. LVS vaccination is traditionally administered by scarification, and the formation of a cutaneous reaction or take at the vaccination site is recognised as a clinical correlate of protection. Although previous studies have suggested that high antibody titres following vaccination might serve as a useful surrogate marker, the immunological correlates of protection remain unknown. METHODS: We investigated the host T-cell-mediated immune (T-CMI) responses elicited following immunisation with LVS vaccine formulated by the DynPort Vaccine Company (DVC-LVS) or the United States Army Medical Research Institute of Infectious Diseases (USAMRIID-LVS). We compared T-CMI responses prompted by these vaccines and correlated them with take size. RESULTS: We found that both LVS vaccines elicited similar T-CMI responses. Interestingly, take size associated with the T cells' ability to proliferate, secrete IFN-γ and mobilise degranulation, suggesting that these responses play an essential role in tularaemia protection. CONCLUSIONS: These results renew the appreciation for vaccination through the scarification as a prime route of inoculation to target pathogens driving specific T-CMI responses and provide further evidence that T-CMI plays a role in protection from tularaemia.

14.
Mol Phylogenet Evol ; 155: 107036, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33278587

RESUMEN

The New World ant genus Myrmecocystus Wesmael, 1838 (Formicidae: Formicinae: Lasiini) is endemic to arid and semi-arid habitats of the western United States and Mexico. Several intriguing life history traits have been described for the genus, the best-known of which are replete workers, that store liquified food in their largely expanded crops and are colloquially referred to as "honeypots". Despite their interesting biology and ecological importance for arid ecosystems, the evolutionary history of Myrmecocystus ants is largely unknown and the current taxonomy presents an unsatisfactory systematic framework. We use ultraconserved elements to infer the evolutionary history of Myrmecocystus ants and provide a comprehensive, dated phylogenetic framework that clarifies the molecular systematics within the genus with high statistical support, reveals cryptic diversity, and reconstructs ancestral foraging activity. Using maximum likelihood, Bayesian and species tree approaches on a data set of 134 ingroup specimens (including samples from natural history collections and type material), we recover largely identical topologies that leave the position of only few clades uncertain and cover the intra- and interspecific variation of 28 of the 29 described and six undescribed species. In addition to traditional support values, such as bootstrap and posterior probability, we quantify genealogical concordance to estimate the effects of conflicting evolutionary histories on phylogenetic inference. Our analyses reveal that the current taxonomic classification of the genus is inconsistent with the molecular phylogenetic inference, and we identify cryptic diversity in seven species. Divergence dating suggests that the split between Myrmecocystus and its sister taxon Lasius occurred in the early Miocene. Crown group Myrmecocystus started diversifying about 14.08 Ma ago when the gradual aridification of the southwestern United States and northern Mexico led to formation of the American deserts and to adaptive radiations of many desert taxa.


Asunto(s)
Hormigas/clasificación , Biodiversidad , Filogenia , Animales , Teorema de Bayes , Secuencia Conservada/genética , Clima Desértico , Sitios Genéticos , Miel , Humanos , Funciones de Verosimilitud , Sudoeste de Estados Unidos , Especificidad de la Especie , Factores de Tiempo
15.
Ecology ; 101(12): e03180, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32882749

RESUMEN

What happens in meadows after populations of natural grazers rebound following centuries of low abundance? Many seagrass ecosystems are now experiencing this phenomenon with the recovery of green turtles (Chelonia mydas), large-bodied marine herbivores that feed on seagrasses. These seagrass ecosystems provide a rare opportunity to study ecosystem-wide shifts that result from a recovery of herbivores. We evaluate changes in regulation of seagrass productivity in a naturally grazed tropical ecosystem by (1) comparing Thalassia testudinum productivity in grazed and ungrazed areas and (2) evaluating potential regulating mechanisms of T. testudinum productivity. We established 129 green turtle exclusion cages in grazed and ungrazed areas to quantify T. testudinum growth (linear, area, mass, productivity : biomass [P:B]). In each exclosure, we recorded temperature, irradiance, water depth, nitrogen : phosphorus ratio (N:P) of blade tissue, grazing intensity before cage placement, and T. testudinum structural and nutrient characteristics. Thalassia testudinum exhibited compensatory growth in grazed areas via stimulated blade linear growth, blade area growth, and P:B across seasonal high and low growth periods and in shallow (3-4 m) and deep (9-10 m) seagrass meadows. Irradiance, depth, and N:P ratios had significant roles in regulating mass growth and P:B of T. testudinum in ungrazed areas. Depth was a significant regulating factor of mass growth and P:B in grazed areas; rates were higher and more variable in shallow meadows than in deep meadows. Grazing intensity was also a significant regulating factor for P:B, stimulating tissue turnover with increasing grazing pressure. This study provides important insights into how recovery of a large marine herbivore can result in dramatic, sustainable changes in the regulation of seagrass productivity. We also highlight the need for a historical perspective and use of appropriate indicators, including P:B and grazing intensity, when evaluating seagrass response to green turtle grazing as meadows are returned to a natural grazed state. In an age of green turtle recovery and global seagrass decline due to anthropogenic threats, a thorough understanding of green turtle-seagrass interactions at the ecosystem level is critical to ensure the restoration of seagrass ecosystems and continued recovery of green turtle populations.


Asunto(s)
Ecosistema , Hydrocharitaceae , Animales , Biomasa , Región del Caribe , Herbivoria
16.
Vaccines (Basel) ; 8(3)2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32722194

RESUMEN

The immune response to live-attenuated Francisella tularensis vaccine and its host evasion mechanisms are incompletely understood. Using RNA-Seq and LC-MS on samples collected pre-vaccination and at days 1, 2, 7, and 14 post-vaccination, we identified differentially expressed genes in PBMCs, metabolites in serum, enriched pathways, and metabolites that correlated with T cell and B cell responses, or gene expression modules. While an early activation of interferon α/ß signaling was observed, several innate immune signaling pathways including TLR, TNF, NF-κB, and NOD-like receptor signaling and key inflammatory cytokines such as Il-1α, Il-1ß, and TNF typically activated following infection were suppressed. The NF-κB pathway was the most impacted and the likely route of attack. Plasma cells, immunoglobulin, and B cell signatures were evident by day 7. MHC I antigen presentation was more actively up-regulated first followed by MHC II which coincided with the emergence of humoral immune signatures. Metabolomics analysis showed that glycolysis and TCA cycle-related metabolites were perturbed including a decline in pyruvate. Correlation networks that provide hypotheses on the interplay between changes in innate immune, T cell, and B cell gene expression signatures and metabolites are provided. Results demonstrate the utility of transcriptomics and metabolomics for better understanding molecular mechanisms of vaccine response and potential host-pathogen interactions.

17.
Vaccines (Basel) ; 8(3)2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32722207

RESUMEN

Francisella tularensis (F. tularensis) is an intracellular pathogen that causes a potentially debilitating febrile illness known as tularemia. F. tularensis can be spread by aerosol transmission and cause fatal pneumonic tularemia. If untreated, mortality rates can be as high as 30%. To study the host responses to a live-attenuated tularemia vaccine, peripheral blood mononuclear cell (PBMC) samples were assayed from 10 subjects collected pre- and post-vaccination, using both the 2D-DIGE/MALDI-MS/MS and LC-MS/MS approaches. Protein expression related to antigen processing and presentation, inflammation (PPARγ nuclear receptor), phagocytosis, and gram-negative bacterial infection was enriched at Day 7 and/or Day 14. Protein candidates that could be used to predict human immune responses were identified by evaluating the correlation between proteome changes and humoral and cellular immune responses. Consistent with the proteomics data, parallel transcriptomics data showed that MHC class I and class II-related signals important for protein processing and antigen presentation were up-regulated, further confirming the proteomic results. These findings provide new biological insights that can be built upon in future clinical studies, using live attenuated strains as immunogens, including their potential use as surrogates of protection.

18.
Vaccines (Basel) ; 8(3)2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32722213

RESUMEN

Tularemia is a highly infectious and contagious disease caused by the bacterium Francisella tularensis. To better understand human response to a live-attenuated tularemia vaccine and the biological pathways altered post-vaccination, healthy adults were vaccinated, and plasma was collected pre- and post-vaccination for longitudinal lipidomics studies. Using tandem mass spectrometry, we fully characterized individual lipid species within predominant lipid classes to identify changes in the plasma lipidome during the vaccine response. Separately, we targeted oxylipins, a subset of lipid mediators involved in inflammatory pathways. We identified 14 differentially abundant lipid species from eight lipid classes. These included 5-hydroxyeicosatetraenoic acid (5-HETE) which is indicative of lipoxygenase activity and, subsequently, inflammation. Results suggest that 5-HETE was metabolized to a dihydroxyeicosatrienoic acid (DHET) by day 7 post-vaccination, shedding light on the kinetics of the 5-HETE-mediated inflammatory response. In addition to 5-HETE and DHET, we observed pronounced changes in 34:1 phosphatidylinositol, anandamide, oleamide, ceramides, 16:1 cholesteryl ester, and other glycerophospholipids; several of these changes in abundance were correlated with serum cytokines and T cell activation. These data provide new insights into alterations in plasma lipidome post-tularemia vaccination, potentially identifying key mediators and pathways involved in vaccine response and efficacy.

19.
Biochem Pharmacol ; 158: 27-34, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30261175

RESUMEN

The use of new psychoactive substituted 2,5-dimethoxy-N-benzylphenethylamines is associated with abuse and toxicity in the United States and elsewhere and their pharmacology is not well known. This study compares the mechanisms of action of 2-(2,5-dimethoxy-4-methylphenyl)-N-(2-methoxybenzyl)ethanamine (25D-NBOMe), 2-(4-ethyl-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethanamine (25E-NBOMe), 2-(2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethanamine (25H-NBOMe), 2-(((4-iodo-2,5-dimethoxyphenethyl)amino)methyl)phenol (25I-NBOH); and 2-(2,5-dimethoxy-4-nitrophenyl)-N-(2-methoxybenzyl)ethanamine) (25N-NBOMe) with hallucinogens and stimulants. Mammalian cells heterologously expressing 5-HT1A, 5-HT2A, 5-HT2B or 5-HT2C receptors, or dopamine, serotonin or norepinephrine transporters (DAT, SERT and NET, respectively) were used to assess drug affinities at radioligand binding sites. Potencies and efficacies were determined using [35S]GTPγS binding assays (5-HT1A), inositol-phosphate accumulation assays (5-HT2A, 5-HT2B and 5-HT2C), and uptake and release assays (transporters). The substituted phenethylamines were very low potency and low efficacy agonists at the 5-HT1A receptor. 25D-NBOMe, 25E-NBOMe, 25H-NBOMe, 25I-NBOH and 25N-NBOMe had very high affinity for, and full efficacy at, 5-HT2A and 5-HT2C receptors. In the 5-HT2A receptor functional assay, 25D-NBOMe, 25E-NBOMe, 25I-NBOH and 25N-NBOMe had subnanomolar to low nanomolar potencies similar to (+)lysergic acid diethylamide (LSD) while 25H-NBOMe had lower potency, similar to serotonin. At the 5-HT2C receptor, four had very high potencies, similar to LSD and serotonin, while 25H-NBOMe had lower potency. At the 5-HT2B receptor, the compounds had lower affinity, potency and efficacy compared to 5-HT2A or 5-HT2C. The phenethylamines had low to mid micromolar affinities and potencies at the transporters. These results demonstrate that these -NBOMe and -NBOH substituted phenethylamines have a biochemical pharmacology consistent with hallucinogenic activity, with little psychostimulant activity.


Asunto(s)
Fenetilaminas/farmacología , Psicotrópicos/farmacología , Receptor de Serotonina 5-HT2A/metabolismo , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Fenetilaminas/química , Psicotrópicos/química , Agonistas del Receptor de Serotonina 5-HT2/química
20.
J Med Chem ; 61(20): 9121-9131, 2018 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-30240563

RESUMEN

Methamphetamine, a human vesicular monoamine transporter 2 (VMAT2) substrate, releases dopamine, serotonin, and norepinephrine from vesicles into the cytosol of presynaptic neurons and induces reverse transport by the monoamine transporters to increase extracellular neurotransmitters. Currently available radioligands for VMAT2 have considerable liabilities: The binding of [3H]dihydrotetrabenazine ([3H]DHTB) to a site on VMAT2 is not dependent on ATP, and [3H]reserpine binds almost irreversibly to VMAT2. Herein we demonstrate that several arylpiperidinylquinazolines (APQs) are potent inhibitors of [3H]reserpine binding at recombinant human VMAT2 expressed in HEK-293 cells. These compounds are biodiastereoselective and bioenantioselective. The lead radiolabeled APQ is unique because it binds reversibly to VMAT2 but does not bind the [3H]DHTB binding site. Furthermore, experimentation shows that several novel APQ ligands have high potency for inhibition of uptake by both HEK-VMAT2 cells and mouse striatal vesicles and may be useful tools for characterizing drug-induced effects on human VMAT2 expression and function.


Asunto(s)
Diseño de Fármacos , Quinazolinas/síntesis química , Quinazolinas/farmacología , Proteínas de Transporte Vesicular de Monoaminas/antagonistas & inhibidores , Animales , Técnicas de Química Sintética , Células HEK293 , Humanos , Ligandos , Ratones , Quinazolinas/química , Quinazolinas/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...