Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Protoc ; 12(10): 2081-2096, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28880279

RESUMEN

Cell invasion through basement membrane (BM) barriers is crucial in development, leukocyte trafficking and the spread of cancer. The mechanisms that direct invasion, despite their importance in normal and disease states, are poorly understood, largely because of the inability to visualize dynamic cell-BM interactions in vivo. This protocol describes multichannel time-lapse confocal imaging of anchor-cell invasion in live Caenorhabditis elegans. Methods presented include outline-slide preparation and worm growth synchronization (15 min), mounting (20 min), image acquisition (20-180 min), image processing (20 min) and quantitative analysis (variable timing). The acquired images enable direct measurement of invasive dynamics including formation of invadopodia and cell-membrane protrusions, and removal of BM. This protocol can be combined with genetic analysis, molecular-activity probes and optogenetic approaches to uncover the molecular mechanisms underlying cell invasion. These methods can also be readily adapted by any worm laboratory for real-time analysis of cell migration, BM turnover and cell-membrane dynamics.


Asunto(s)
Membrana Basal/diagnóstico por imagen , Membrana Basal/metabolismo , Caenorhabditis elegans/citología , Imagenología Tridimensional/métodos , Microscopía Confocal/métodos , Imagen de Lapso de Tiempo/métodos , Animales , Membrana Celular/metabolismo
2.
Methods Mol Biol ; 1407: 13-23, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27271891

RESUMEN

We describe methods for live-cell imaging of yeast cells that we have exploited to image yeast polarity establishment. As a rare event occurring on a fast time-scale, imaging polarization involves a trade-off between spatiotemporal resolution and long-term imaging without excessive phototoxicity. By synchronizing cells in a way that increases resistance to photodamage, we discovered unexpected aspects of polarization including transient intermediates with more than one polarity cluster, oscillatory clustering of polarity factors, and mobile "wandering" polarity sites.


Asunto(s)
Polaridad Celular , Microscopía Fluorescente , Saccharomycetales/citología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fase de Descanso del Ciclo Celular/genética , Saccharomycetales/fisiología
3.
Artículo en Inglés | MEDLINE | ID: mdl-25298332

RESUMEN

Imaging methods have presented scientists with powerful means of investigation for centuries. The ability to resolve structures using light microscopes is though limited to around 200 nm. Fluorescence-based super-resolution light microscopy techniques of several principles and methods have emerged in recent years and offer great potential to extend the capabilities of microscopy. This resolution improvement is especially promising for nanoscience where the imaging of nanoscale structures is inherently restricted by the resolution limit of standard forms of light microscopy. Resolution can be improved by several distinct approaches including structured illumination microscopy, stimulated emission depletion, and single-molecule positioning methods such as photoactivated localization microscopy and stochastic optical reconstruction microscopy and several derivative variations of each of these. These methods involve substantial differences in the resolutions achievable in the different axes, speed of acquisition, compatibility with different labels, ease of use, hardware complexity, and compatibility with live biological samples. The field of super-resolution imaging and its application to nanotechnology is relatively new and still rapidly developing. An overview of how these methods may be used with nanomaterials is presented with some examples of pioneering uses of these approaches.


Asunto(s)
Ensayo de Materiales/métodos , Microscopía/métodos , Imagen Molecular/métodos , Nanopartículas/química , Nanopartículas/ultraestructura , Nanotecnología/métodos , Aumento de la Imagen/métodos
4.
J Cell Biol ; 201(6): 903-13, 2013 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-23751497

RESUMEN

Though critical to normal development and cancer metastasis, how cells traverse basement membranes is poorly understood. A central impediment has been the challenge of visualizing invasive cell interactions with basement membrane in vivo. By developing live-cell imaging methods to follow anchor cell (AC) invasion in Caenorhabditis elegans, we identify F-actin-based invadopodia that breach basement membrane. When an invadopodium penetrates basement membrane, it rapidly transitions into a stable invasive process that expands the breach and crosses into the vulval tissue. We find that the netrin receptor UNC-40 (DCC) specifically enriches at the site of basement membrane breach and that activation by UNC-6 (netrin) directs focused F-actin formation, generating the invasive protrusion and the cessation of invadopodia. Using optical highlighting of basement membrane components, we further demonstrate that rather than relying solely on proteolytic dissolution, the AC's protrusion physically displaces basement membrane. These studies reveal an UNC-40-mediated morphogenetic transition at the cell-basement membrane interface that directs invading cells across basement membrane barriers.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Moléculas de Adhesión Celular/metabolismo , Movimiento Celular/fisiología , Seudópodos/metabolismo , Actinas/metabolismo , Animales , Animales Modificados Genéticamente , Membrana Basal/citología , Membrana Basal/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Moléculas de Adhesión Celular/genética , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas del Tejido Nervioso/metabolismo , Netrinas , Vulva/citología , Vulva/crecimiento & desarrollo , Vulva/metabolismo
5.
Cell ; 139(4): 731-43, 2009 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-19914166

RESUMEN

For budding yeast to ensure formation of only one bud, cells must polarize toward one, and only one, site. Polarity establishment involves the Rho family GTPase Cdc42, which concentrates at polarization sites via a positive feedback loop. To assess whether singularity is linked to the specific Cdc42 feedback loop, we disabled the yeast cell's endogenous amplification mechanism and synthetically rewired the cells to employ a different positive feedback loop. Rewired cells violated singularity, occasionally making two buds. Even cells that made only one bud sometimes initiated two clusters of Cdc42, but then one cluster became dominant. Mathematical modeling indicated that, given sufficient time, competition between clusters would promote singularity. In rewired cells, competition occurred slowly and sometimes failed to develop a single "winning" cluster before budding. Slowing competition in normal cells also allowed occasional formation of two buds, suggesting that singularity is enforced by rapid competition between Cdc42 clusters.


Asunto(s)
Saccharomyces cerevisiae/citología , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Retroalimentación Fisiológica , Modelos Biológicos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína de Unión al GTP cdc42 de Saccharomyces cerevisiae/metabolismo
6.
Nat Cell Biol ; 9(11): 1311-8, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17952060

RESUMEN

The tumour-suppressor gene ATM, mutations in which cause the human genetic disease ataxia telangiectasia (A-T), encodes a key protein kinase that controls the cellular response to DNA double-strand breaks (DSBs). DNA DSBs caused by ionizing radiation or chemicals result in rapid ATM autophosphorylation, leading to checkpoint activation and phosphorylation of substrates that regulate cell-cycle progression, DNA repair, transcription and cell death. However, the precise mechanism by which damaged DNA induces ATM and checkpoint activation remains unclear. Here, we demonstrate that linear DNA fragments added to Xenopus egg extracts mimic DSBs in genomic DNA and provide a platform for ATM autophosphorylation and activation. ATM autophosphorylation and phosphorylation of its substrate NBS1 are dependent on DNA fragment length and the concentration of DNA ends. The minimal DNA length required for efficient ATM autophosphorylation is approximately 200 base pairs, with cooperative autophosphorylation induced by DNA fragments of at least 400 base pairs. Importantly, full ATM activation requires it to bind to DNA regions flanking DSB ends. These findings reveal a direct role for DNA flanking DSB ends in ATM activation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/metabolismo , ADN , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/efectos de los fármacos , Extractos Celulares/química , ADN/farmacología , ADN/fisiología , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Inhibidores Enzimáticos/farmacología , Humanos , Morfolinas/farmacología , Óvulo/química , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/efectos de los fármacos , Pironas/farmacología , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/efectos de los fármacos , Regulación hacia Arriba , Xenopus
7.
DNA Repair (Amst) ; 6(9): 1277-84, 2007 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-17428747

RESUMEN

DNA double strand breaks (DSB) in mammalian cells result in the activation of the ATM protein kinase. This leads to phosphorylation of numerous downstream transducer and effector proteins that coordinate a cellular response including DNA repair, cell cycle arrest or apoptosis. We have developed a reporter protein that allows the measurement of ATM kinase activity in single living cells. This CFP-YFP FRET-based biosensor uses an ATM phosphorylation site and an FHA phosphospecific binding domain to produce a phosphorylation-induced change in conformation, which alters the FRET efficiency between CFP and YFP. We show that the reporter provides a measurable output in response to DSBs and is specific for ATM over ATR or DNA-PK. We expect the description of the spatiotemporal dynamics of ATM activity in living cells that this reporter provides will be helpful in providing a more detailed understanding of the DNA damage response.


Asunto(s)
Proteínas Bacterianas/metabolismo , Técnicas Biosensibles , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/química , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN/química , Transferencia Resonante de Energía de Fluorescencia , Células HeLa , Humanos , Ratones , Células 3T3 NIH , Fragmentos de Péptidos , Fosforilación , Conformación Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Supresoras de Tumor/química
8.
Nat Methods ; 2(1): 17-25, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15789031

RESUMEN

Phosphorylation by protein kinases is the most widespread and well-studied signaling mechanism in eukaryotic cells. Phosphorylation can regulate almost every property of a protein and is involved in all fundamental cellular processes. Cataloging and understanding protein phosphorylation is no easy task: many kinases may be expressed in a cell, and one-third of all intracellular proteins may be phosphorylated, representing as many as 20,000 distinct phosphoprotein states. Defining the kinase complement of the human genome, the kinome, has provided an excellent starting point for understanding the scale of the problem. The kinome consists of 518 kinases, and every active protein kinase phosphorylates a distinct set of substrates in a regulated manner. Deciphering the complex network of phosphorylation-based signaling is necessary for a thorough and therapeutically applicable understanding of the functioning of a cell in physiological and pathological states. We review contemporary techniques for identifying physiological substrates of the protein kinases and studying phosphorylation in living cells.


Asunto(s)
Proteínas Quinasas/química , Adenosina Trifosfato/química , Animales , Biología Computacional , Técnicas Genéticas , Genoma , Humanos , Procesamiento de Imagen Asistido por Computador , Espectrometría de Masas , Fosforilación , Proteínas Quinasas/metabolismo , Estructura Terciaria de Proteína , Proteoma , Programas Informáticos
10.
J Cell Biol ; 165(4): 493-503, 2004 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-15148308

RESUMEN

Filopodia are dynamic F-actin structures that cells use to explore their environment. c-Abl tyrosine kinase promotes filopodia during cell spreading through an unknown mechanism that does not require Cdc42 activity. Using an unbiased approach, we identified Dok1 as a specific c-Abl substrate in spreading fibroblasts. When activated by cell adhesion, c-Abl phosphorylates Y361 of Dok1, promoting its association with the Src homology 2 domain (SH2)/SH3 adaptor protein Nck. Each signaling component was critical for filopodia formation during cell spreading, as evidenced by the finding that mouse fibroblasts lacking c-Abl, Dok1, or Nck had fewer filopodia than cells reexpressing the product of the disrupted gene. Dok1 and c-Abl stimulated filopodia in a mutually interdependent manner, indicating that they function in the same signaling pathway. Dok1 and c-Abl were both detected in filopodia of spreading cells, and therefore may act locally to modulate actin. Our data suggest a novel pathway by which c-Abl transduces signals to the actin cytoskeleton through phosphorylating Dok1 Y361 and recruiting Nck.


Asunto(s)
Movimiento Celular/fisiología , Proteínas de Unión al ADN/fisiología , Fosfoproteínas/fisiología , Proteínas Proto-Oncogénicas c-abl/fisiología , Seudópodos/fisiología , Proteínas de Unión al ARN/fisiología , Actinas/biosíntesis , Proteínas Adaptadoras Transductoras de Señales , Animales , Adhesión Celular/genética , Línea Celular Transformada , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Ratones , Proteínas Oncogénicas/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación , Estructura Terciaria de Proteína/genética , Proteínas Proto-Oncogénicas c-abl/genética , Proteínas Proto-Oncogénicas c-abl/metabolismo , Seudópodos/enzimología , Seudópodos/ultraestructura , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transducción de Señal/genética , Dominios Homologos src/fisiología
11.
Biochem J ; 369(Pt 2): 351-6, 2003 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-12374570

RESUMEN

In isolated rat adipocytes, the insulin stimulation of pyruvate dehydrogenase can be partially inhibited by inhibitors of PI3K (phosphoinositide 3-kinase) and MEK1/2 (mitogen-activated protein kinase/extracellular signal-regulated kinase kinase). In combination, U0126 and wortmannin completely block the insulin stimulation of pyruvate dehydrogenase. It is concluded that the effect of insulin on pyruvate dehydrogenase in rat adipocytes involves two distinct signalling pathways: one is sensitive to wortmannin and the other to U0126. The synthetic phosphoinositolglycan PIG41 can activate pyruvate dehydrogenase but the activation is only approx. 30% of the maximal effect of insulin. This modest activation can be completely blocked by wortmannin alone, suggesting that PIG41 acts through only one of the pathways leading to the activation of pyruvate dehydrogenase.


Asunto(s)
Adipocitos/enzimología , Insulina/farmacología , Complejo Piruvato Deshidrogenasa/metabolismo , Transducción de Señal , Adipocitos/citología , Adipocitos/efectos de los fármacos , Androstadienos/farmacología , Animales , Butadienos/farmacología , Células Cultivadas , Sinergismo Farmacológico , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Insulina/metabolismo , MAP Quinasa Quinasa 1 , Masculino , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Nitrilos/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositoles/química , Fosfatidilinositoles/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Polisacáridos/química , Polisacáridos/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt , Ratas , Wortmanina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...