Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 125(19): 190403, 2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33216597

RESUMEN

Entangled resources enable quantum sensing that achieves Heisenberg scaling, a quadratic improvement on the standard quantum limit, but preparing large N spin entangled states is challenging in the presence of decoherence. We present a quantum control strategy using highly nonlinear geometric phase gates which can be used for generic state or unitary synthesis on the Dicke subspace with O(N) or O(N^{2}) gates, respectively. The method uses a dispersive coupling of the spins to a common bosonic mode and does not require addressability, special detunings, or interactions between the spins. By using amplitude amplification our control sequence for preparing states ideal for metrology can be significantly simplified to O(N^{5/4}) geometric phase gates with action angles O(1/N) that are more robust to mode decay. The geometrically closed path of the control operations ensures the gates are insensitive to the initial state of the mode and the sequence has built-in dynamical decoupling providing resilience to dephasing errors.

2.
Nat Commun ; 8(1): 1205, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29089492

RESUMEN

Superradiance (SR) is a cooperative phenomenon which occurs when an ensemble of quantum emitters couples collectively to a mode of the electromagnetic field as a single, massive dipole that radiates photons at an enhanced rate. Previous studies on solid-state systems either reported SR from sizeable crystals with at least one spatial dimension much larger than the wavelength of the light and/or only close to liquid-helium temperatures. Here, we report the observation of room-temperature superradiance from single, highly luminescent diamond nanocrystals with spatial dimensions much smaller than the wavelength of light, and each containing a large number (~ 103) of embedded nitrogen-vacancy (NV) centres. The results pave the way towards a systematic study of SR in a well-controlled, solid-state quantum system at room temperature.

3.
Sci Rep ; 6: 37495, 2016 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-27869142

RESUMEN

Precision measurements of gravity can provide tests of fundamental physics and are of broad practical interest for metrology. We propose a scheme for absolute gravimetry using a quantum magnetomechanical system consisting of a magnetically trapped superconducting resonator whose motion is controlled and measured by a nearby RF-SQUID or flux qubit. By driving the mechanical massive resonator to be in a macroscopic superposition of two different heights our we predict that our interferometry protocol could, subject to systematic errors, achieve a gravimetric sensitivity of Δg/g ~ 2.2 × 10-10 Hz-1/2, with a spatial resolution of a few nanometres. This sensitivity and spatial resolution exceeds the precision of current state of the art atom-interferometric and corner-cube gravimeters by more than an order of magnitude, and unlike classical superconducting interferometers produces an absolute rather than relative measurement of gravity. In addition, our scheme takes measurements at ~10 kHz, a region where the ambient vibrational noise spectrum is heavily suppressed compared the ~10 Hz region relevant for current cold atom gravimeters.

4.
Phys Rev Lett ; 99(1): 010401, 2007 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-17678140

RESUMEN

We describe a scheme for creating quadrature- and intensity-squeezed atom lasers that do not require squeezed light as an input. The beam becomes squeezed due to nonlinear interactions between the atoms in the beam in an analogue to optical Kerr squeezing. We develop an analytic model of the process which we compare to a detailed stochastic simulation of the system using phase space methods. Finally we show that significant squeezing can be obtained in an experimentally realistic system and suggest ways of increasing the tunability of the squeezing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA