Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
medRxiv ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38562793

RESUMEN

Recent studies have revealed the pervasive landscape of rare structural variants (rSVs) present in human genomes. rSVs can have extreme effects on the expression of proximal genes and, in a rare disease context, have been implicated in patient cases where no diagnostic single nucleotide variant (SNV) was found. Approaches for integrating rSVs to date have focused on targeted approaches in known Mendelian rare disease genes. This approach is intractable for rare diseases with many causal loci or patients with complex, multi-phenotype syndromes. We hypothesized that integrating trait-relevant polygenic scores (PGS) would provide a substantial reduction in the number of candidate disease genes in which to assess rSV effects. We further implemented a method for ranking PGS genes to define a set of core/key genes where a rSV has the potential to exert relatively larger effects on disease risk. Among a subset of patients enrolled in the Genomic Answers for Kids (GA4K) rare disease program (N=497), we used PacBio HiFi long-read whole genome sequencing (lrWGS) to identify rSVs intersecting genes in trait-relevant PGSs. Illustrating our approach in Autism (N=54 cases), we identified 22, 019 deletions, 2,041 duplications, 87,826 insertions, and 214 inversions overlapping putative core/key PGS genes. Additionally, by integrating genomic constraint annotations from gnomAD, we observed that rare duplications overlapping putative core/key PGS genes were frequently in higher constraint regions compared to controls (P = 1×10-03). This difference was not observed in the lowest-ranked gene set (P = 0.15). Overall, our study provides a framework for the annotation of long-read rSVs from lrWGS data and prioritization of disease-linked genomic regions for downstream functional validation of rSV impacts. To enable reuse by other researchers, we have made SV allele frequencies and gene associations freely available.

2.
medRxiv ; 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38260377

RESUMEN

Emerging evidence implicates common genetic variation - aggregated into polygenic scores (PGS) - impacting the onset and phenotypic presentation of rare diseases. In this study, we quantified individual polygenic liability for 1,151 previously published PGS in a cohort of 2,374 probands enrolled in the Genomic Answers for Kids (GA4K) rare disease study, revealing widespread associations between rare disease phenotypes and PGSs for common complex diseases and traits, blood protein levels, and brain and other organ morphological measurements. We observed increased polygenic burden in probands with variants of unknown significance (VUS) compared to unaffected carrier parents. We further observed an enrichment in overlap between diagnostic and candidate rare disease genes and large-effect PGS genes. Overall, our study supports and expands on previous findings of complex trait associations in rare disease phenotypes and provides a framework for identifying novel candidate rare disease genes and in understanding variable penetrance of candidate Mendelian disease variants.

3.
Nat Commun ; 14(1): 3090, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-37248219

RESUMEN

Long-read HiFi genome sequencing allows for accurate detection and direct phasing of single nucleotide variants, indels, and structural variants. Recent algorithmic development enables simultaneous detection of CpG methylation for analysis of regulatory element activity directly in HiFi reads. We present a comprehensive haplotype resolved 5-base HiFi genome sequencing dataset from a rare disease cohort of 276 samples in 152 families to identify rare (~0.5%) hypermethylation events. We find that 80% of these events are allele-specific and predicted to cause loss of regulatory element activity. We demonstrate heritability of extreme hypermethylation including rare cis variants associated with short (~200 bp) and large hypermethylation events (>1 kb), respectively. We identify repeat expansions in proximal promoters predicting allelic gene silencing via hypermethylation and demonstrate allelic transcriptional events downstream. On average 30-40 rare hypermethylation tiles overlap rare disease genes per patient, providing indications for variation prioritization including a previously undiagnosed pathogenic allele in DIP2B causing global developmental delay. We propose that use of HiFi genome sequencing in unsolved rare disease cases will allow detection of unconventional diseases alleles due to loss of regulatory element activity.


Asunto(s)
Metilación de ADN , Enfermedades Raras , Humanos , Haplotipos , Enfermedades Raras/genética , Metilación de ADN/genética , Análisis de Secuencia de ADN , Secuencia de Bases , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas del Tejido Nervioso/genética
4.
Genet Med ; 25(5): 100020, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36718845

RESUMEN

PURPOSE: This study aimed to assess the amount and types of clinical genetic testing denied by insurance and the rate of diagnostic and candidate genetic findings identified through research in patients who faced insurance denials. METHODS: Analysis consisted of review of insurance denials in 801 patients enrolled in a pediatric genomic research repository with either no previous genetic testing or previous negative genetic testing result identified through cross-referencing with insurance prior-authorizations in patient medical records. Patients and denials were also categorized by type of insurance coverage. Diagnostic findings and candidate genetic findings in these groups were determined through review of our internal variant database and patient charts. RESULTS: Of the 801 patients analyzed, 147 had insurance prior-authorization denials on record (18.3%). Exome sequencing and microarray were the most frequently denied genetic tests. Private insurance was significantly more likely to deny testing than public insurance (odds ratio = 2.03 [95% CI = 1.38-2.99] P = .0003). Of the 147 patients with insurance denials, 53.7% had at least 1 diagnostic or candidate finding and 10.9% specifically had a clinically diagnostic finding. Fifty percent of patients with clinically diagnostic results had immediate medical management changes (5.4% of all patients experiencing denials). CONCLUSION: Many patients face a major barrier to genetic testing in the form of lack of insurance coverage. A number of these patients have clinically diagnostic findings with medical management implications that would not have been identified without access to research testing. These findings support re-evaluation of insurance carriers' coverage policies.


Asunto(s)
Genómica , Cobertura del Seguro , Niño , Humanos
5.
Genet Med ; 24(6): 1336-1348, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35305867

RESUMEN

PURPOSE: This study aimed to provide comprehensive diagnostic and candidate analyses in a pediatric rare disease cohort through the Genomic Answers for Kids program. METHODS: Extensive analyses of 960 families with suspected genetic disorders included short-read exome sequencing and short-read genome sequencing (srGS); PacBio HiFi long-read genome sequencing (HiFi-GS); variant calling for single nucleotide variants (SNV), structural variant (SV), and repeat variants; and machine-learning variant prioritization. Structured phenotypes, prioritized variants, and pedigrees were stored in PhenoTips database, with data sharing through controlled access the database of Genotypes and Phenotypes. RESULTS: Diagnostic rates ranged from 11% in patients with prior negative genetic testing to 34.5% in naive patients. Incorporating SVs from genome sequencing added up to 13% of new diagnoses in previously unsolved cases. HiFi-GS yielded increased discovery rate with >4-fold more rare coding SVs compared with srGS. Variants and genes of unknown significance remain the most common finding (58% of nondiagnostic cases). CONCLUSION: Computational prioritization is efficient for diagnostic SNVs. Thorough identification of non-SNVs remains challenging and is partly mitigated using HiFi-GS sequencing. Importantly, community research is supported by sharing real-time data to accelerate gene validation and by providing HiFi variant (SNV/SV) resources from >1000 human alleles to facilitate implementation of new sequencing platforms for rare disease diagnoses.


Asunto(s)
Genómica , Enfermedades Raras , Niño , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Linaje , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Análisis de Secuencia de ADN
6.
Nat Metab ; 2(1): 97-109, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-32066997

RESUMEN

The complex relationship between metabolic disease risk and body fat distribution in humans involves cellular characteristics which are specific to body fat compartments. Here we show depot-specific differences in the stromal vascual fraction of visceral and subcutaneous adipose tissue by performing single-cell RNA sequencing of tissue specimen from obese individuals. We characterize multiple immune cells, endothelial cells, fibroblasts, adipose and hematopoietic stem cell progenitors. Subpopulations of adipose-resident immune cells are metabolically active and associated with metabolic disease status and those include a population of potential dysfunctional CD8+ T cells expressing metallothioneins. We identify multiple types of adipocyte progenitors that are common across depots, including a subtype enriched in individuals with type 2 diabetes. Depot-specific analysis reveals a class of adipocyte progenitors unique to visceral adipose tissue, which shares common features with beige preadipocytes. Our human single-cell transcriptome atlas across fat depots provides a resource to dissect functional genomics of metabolic disease.


Asunto(s)
Tejido Adiposo/metabolismo , Enfermedades Metabólicas/metabolismo , Análisis de la Célula Individual/métodos , Adipocitos/metabolismo , Tejido Adiposo/citología , Adulto , Distribución de la Grasa Corporal , Femenino , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Enfermedades Metabólicas/patología , Persona de Mediana Edad , Obesidad/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...