Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Med Biol ; 66(5)2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33450742

RESUMEN

This document gives guidance for multidisciplinary teams within institutions setting up and using an MRI-guided radiotherapy (RT) treatment planning service. It has been written by a multidisciplinary working group from the Institute of Physics and Engineering in Medicine (IPEM). Guidance has come from the experience of the institutions represented in the IPEM working group, in consultation with other institutions, and where appropriate references are given for any relevant legislation, other guidance documentation and information in the literature. Guidance is only given for MRI acquired for external beam RT treatment planning in a CT-based workflow, i.e. when MRI is acquired and registered to CT with the purpose of aiding delineation of target or organ at risk volumes. MRI use for treatment response assessment, MRI-only RT and other RT treatment types such as brachytherapy and gamma radiosurgery are not considered within the scope of this document. The aim was to produce guidance that will be useful for institutions who are setting up and using a dedicated MR scanner for RT (referred to as an MR-sim) and those who will have limited time on an MR scanner potentially managed outside of the RT department, often by radiology. Although not specifically covered in this document, there is an increase in the use of hybrid MRI-linac systems worldwide and brief comments are included to highlight any crossover with the early implementation of this technology. In this document, advice is given on introducing a RT workload onto a non-RT-dedicated MR scanner, as well as planning for installation of an MR scanner dedicated for RT. Next, practical guidance is given on the following, in the context of RT planning: training and education for all staff working in and around an MR scanner; RT patient set-up on an MR scanner; MRI sequence optimisation for RT purposes; commissioning and quality assurance (QA) to be performed on an MR scanner; and MRI to CT registration, including commissioning and QA.


Asunto(s)
Radioterapia Guiada por Imagen , Humanos , Yodobencenos , Imagen por Resonancia Magnética , Maleimidas , Aceleradores de Partículas , Planificación de la Radioterapia Asistida por Computador
2.
Phys Imaging Radiat Oncol ; 15: 80-84, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33163632

RESUMEN

BACKGROUND AND PURPOSE: Magnetic Resonance Imaging (MRI) is increasingly being used in radiotherapy (RT). However, geometric distortions are a known challenge of using MRI in RT. The aim of this study was to demonstrate feasibility of a national audit of MRI geometric distortions. This was achieved by assessing large field of view (FOV) MRI distortions on a number of scanners used clinically for RT. MATERIALS AND METHODS: MRI scans of a large FOV MRI geometric distortion phantom were acquired on 11 MRI scanners that are used clinically for RT in the UK. The mean and maximum distortions and variance between scanners were reported at different distances from the isocentre. RESULTS: For a small FOV representing a brain (100-150 mm from isocentre) all distortions were < 2 mm except for the maximum distortion of one scanner. For a large FOV representing a head and neck/pelvis (200-250 mm from isocentre) mean distortions were < 2 mm except for one scanner, maximum distortions were > 10 mm in some cases. The variance between scanners was low and was found to increase with distance from isocentre. CONCLUSIONS: This study demonstrated feasibility of the technique to be repeated in a country wide geometric distortion audit of all MRI scanners used clinically for RT. Recommendations were made for performing such an audit and how to derive acceptable limits of distortion in such an audit.

3.
Br J Radiol ; 93(1105): 20190161, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31724876

RESUMEN

The aim of this article is to propose meaningful guidance covering the technical and safety issues involved when designing or conducting radiotherapy clinical trials that use MRI for treatment planning. The complexity of imaging requirements will depend on the trial aims, design and MRI methods used.The use of MRI within the RT pathway is becoming more prevalent and clinically appropriate as access to MRI increases, treatment planning systems become more versatile and potential indications for MRI-planning in RT are documented. Novel MRI-planning opportunities are often initiated and validated within clinical trials.The guidance in this document is intended to assist researchers designing RT clinical trials involving MRI, so that they may provide sufficient information about the appropriate methods to be used for image acquisition, post-processing and quality assurance such that participating sites complete MRI to consistent standards. It has been produced in collaboration with the National Radiotherapy Trials Quality Assurance Group (RTTQA).As the use of MRI in RT is developed, it is highly recommended for researchers writing clinical trial protocols to include imaging guidance as part of their clinical trial documentation covering the trial-specific requirements for MRI procedures. Many of the considerations and recommendations in this guidance may well apply to MR-guided treatment machines, where clinical trials will be crucial. Similarly, many of these recommendations will apply to the general use of MRI in RT, outside of clinical trials.This document contains a large number of recommendations, not all of which will be relevant to any particular trial. Designers of RT clinical trials must therefore take this into account. They must also use their own judgement as to the appropriate compromise between accessibility of the trial and its technical rigour.


Asunto(s)
Ensayos Clínicos como Asunto , Imagen por Resonancia Magnética , Planificación de Atención al Paciente , Planificación de la Radioterapia Asistida por Computador , Radioterapia Guiada por Imagen , Humanos , Proyectos de Investigación
4.
Phys Med Biol ; 64(17): 175021, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31239419

RESUMEN

The benefits of integrating MRI into the radiotherapy pathway are well published, however there is little consensus in guidance on how to commission or implement its use. With a view to developing consensus guidelines for the use of MRI in external beam radiotherapy (EBRT) treatment planning in the UK, a survey was undertaken by an Institute of Physics and Engineering in Medicine (IPEM) working-party to assess the current landscape of MRI use in EBRT in the UK. A multi-disciplinary working-party developed a survey to understand current practice using MRI for EBRT treatment planning; investigate how MRI is currently used and managed; and identify knowledge gaps. The survey was distributed electronically to radiotherapy service managers and physics leads in 71 UK radiotherapy (RT) departments (all NHS and private groups). The survey response rate was 87% overall, with 89% of NHS and 75% of private centres responding. All responding centres include EBRT in some RT pathways: 94% using Picture Archiving and Communication System (PACS) images potentially acquired without any input from RT departments, and 69% had some form of MRI access for planning EBRT. Most centres reporting direct access use a radiology scanner within the same hospital in dedicated (26%) or non-dedicated (52%) RT scanning sessions. Only two centres reported having dedicated RT MRI scanners in the UK, lower than reported in other countries. Six percent of radiotherapy patients in England (data not publically available outside of England) have MRI as part of their treatment, which again is lower than reported elsewhere. Although a substantial number of centres acquire MRI scans for treatment planning purposes, most centres acquire less than five patient scans per month for each treatment site. Commissioning and quality assurance of both image registration and MRI scanners was found to be variable across the UK. In addition, staffing models and training given to different staff groups varied considerably across the UK, reflecting the current lack of national guidelines. The primary barriers reported to MRI implementation in EBRT planning included costs (e.g. lack of a national tariff for planning MRI), lack of MRI access and/or capacity within hospitals. Despite these challenges, significant interest remains in increasing MRI-assisted EBRT planning over the next five years.


Asunto(s)
Imagen por Resonancia Magnética/estadística & datos numéricos , Utilización de Procedimientos y Técnicas/estadística & datos numéricos , Planificación de la Radioterapia Asistida por Computador/estadística & datos numéricos , Humanos , Imagen por Resonancia Magnética/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Encuestas y Cuestionarios , Reino Unido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA