Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Iran J Basic Med Sci ; 24(6): 787-795, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34630956

RESUMEN

OBJECTIVES: The essential oil (EO) extracted from Cinnamomum verum leaves has been used as an antimicrobial agent for centuries. But its antifungal and antibiofilm efficacy is still not clearly studied. The objective of this research was to evaluate the in vitro antifungal and antibiofilm efficacy of C. verum leaf EO against C. albicans, C. tropicalis, and C. dubliniensis and the toxicity of EO using an in vitro model. MATERIALS AND METHODS: The effect of EO vapor was evaluated using a microatmosphere technique. CLSI microdilution assay was employed in determining the Minimum Inhibitory (MIC) and Fungicidal Concentrations (MFC). Killing time was determined using a standard protocol. The effect of EO on established biofilms was quantified and visualized using XTT and Scanning Electron Microscopy (SEM), respectively. Post-exposure intracellular changes were visualized using Transmission Electron Microscopy (TEM). The toxicological assessment was carried out with the Human Keratinocyte cell line. The chemical composition of EO was evaluated using Gas Chromatography-Mass Spectrometry (GC-MS). RESULTS: All test strains were susceptible to cinnamon oil vapor. EO exhibited MIC value 1.0 mg/ml and MFC value 2.0 mg/ml against test strains. The killing time of cinnamon oil was 6 hr. Minimum Biofilm Inhibitory Concentration (MBIC50) for established biofilms was <0.2 mg/ml for all test strains. SEM images exhibited cell wall damages, cellular shrinkages, and decreased hyphal formation of Candida. TEM indicated intracellular vacuolation, granulation, and cell wall damages. Cinnamon leaf oil caused no inhibition of HaCaT cells at any concentration tested. Eugenol was the abundant compound in cinnamon oil. CONCLUSION: C. verum EO is a potential alternative anti-Candida agent with minimal toxicity on the human host.

2.
An Acad Bras Cienc ; 93(1): e20201507, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33656062

RESUMEN

Phytomedicines are becoming more popular in treatment of infectious diseases worldwide. Cinnamomum verum essential oil (EO) has been used as a therapeutic alternative for various diseases. This study aimed to evaluate the antibacterial and antibiofilm activity of the C. verum leaf EO against Pseudomonas aeruginosa, Staphylococcus aureus and Klebsiella pneumoniae. Effect of EO vapor on planktonic cells was determined using microatmosphere technique. CLSI M7-A10 method was employed in Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) experiments. Effect of EO on established biofilms was quantified and visualized using XTT and Scanning Electron Microscope (SEM). In-vitro toxicity was evaluated using Human Keratinocytes (HaCaT). Chemical analysis of EO was done using Gas Chromatography- Mass Spectrometry (GC-MS). All tested strains were sensitive to cinnamon oil vapor. EO exhibited 0.5 and 1.0 mg/mL MIC and MBC against all test strains. Minimum Biofilm Inhibitory and Biofilm Eradication Concentrations (MBIC50 and MBEC) were 1.0 and 4.0 mg/mL. SEM indicated cellular shrinkages, cell wall damages, and decreased biofilm densities. Cinnamon oil didn't show any toxicity on HaCaT cell at any concentration tested. Eugenol was the most abundant compound in C. verum oil. C. verum EO shows an antibacterial and antibiofilm activity with minimal toxicity on host.


Asunto(s)
Aceites Volátiles , Staphylococcus aureus , Antibacterianos/farmacología , Biopelículas , Cinnamomum zeylanicum , Cromatografía de Gases y Espectrometría de Masas , Humanos , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/farmacología , Hojas de la Planta , Pseudomonas aeruginosa
3.
Dent Mater ; 37(5): e276-e289, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33608139

RESUMEN

OBJECTIVES: To determine the impact of treating caries-affected dentin (CAD) with: 0.2% sodium fluoride (NaF), casein phosphopeptide-amorphous calcium phosphate (CPP-ACP/MI Paste™) or peptide P11-4 (Curodont™ Repair) on the longevity of resin/CAD interface at storage times of 24 -h, 6- and 18-month. METHODS: 255 caries-free third molars were used, and CAD was produced by a biological method. The teeth were randomly distributed into: G1- Sound dentin (SD); G2- CAD; G3- CAD + 0.2% NaF (CAD/NaF); G4- CAD + CPP-ACP (CAD/ACP); G5- CAD + Curodont™ Repair (CAD/P11-4). The Filtek Z350 composite resin block was bonded to dentin using Adper™ Single 2 (4 mm/height). Resin/dentin blocks were stored in a solution of Simulated Body Fluid at 37 °C, pressures were modified to simulate natural pulpal pressures. Specimens were investigated by microtensile bond strength (µTBS) (n = 8), Scanning Electron Microscopy (to assess the failure mode) (n = 8), nanoinfiltration (to assess the interface sealing) (n = 3), in situ zymography (to assess the gelatinolytic activity) (n = 3) and micro-computed microtomography (µ-CT) (to assess the mineralization) (n = 3). Data from µTBS, µ-CT and, nanoinfiltration and hybrid layer formation/degradation were submitted to two-way ANOVA and Tukey tests, and failure patterns and in situ zymography to Kruskal-Wallis and Dunn tests (α = 5%). RESULTS: The highest mineral density change by µ-CT, smallest silver nitrate infiltration and proteolytic activity in the adhesive layer were obtained significantly for the groups SD, CAD/ACP and CAD/P11-4, with most mixed fractures at 18-month (p < 0.001). CAD/NaF showed significantly similar values to CAD, CAD and CAD/NaF which presented a high percentage of adhesive fracture (p < 0.001) at all time periods. SIGNIFICANCE: Treating caries-affected dentin with remineralizing agents CPP-ACP and Curodont™ Repair, has the potential to be a clinically relevant treatment protocol to increase the longevity of adhesive restorations.


Asunto(s)
Recubrimiento Dental Adhesivo , Recubrimientos Dentinarios , Biomineralización , Cementos Dentales , Dentina , Estudios de Seguimiento , Ensayo de Materiales , Cementos de Resina , Resistencia a la Tracción
4.
Mem Inst Oswaldo Cruz ; 115: e200349, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32997002

RESUMEN

BACKGROUND: Essential oils (EO) extracted from Cinnamomum verum has been used as an antimicrobial agents for centuries. The effects of C. verum leaf oil against virulence of microorganisms is not well studied yet. OBJECTIVES: This study evaluates the effect of C. verum leaf oil against three virulence factors of Candida albicans, C. tropicalis and C. dubliniensis and its in-vivo toxicity. METHODS: Chemical composition of EO was determined using gas chromatography-mass spectrometry (GC-MS). Minimum inhibitory concentration (MIC) was determined using clinical and laboratory standards institute (CLSI) M27-A3 broth microdilution. Effect of EO on initial adhesion was quantified using XTT assay after allowing Candida cells to adhere to the polystyrene surface for 2 h. Biofilm formation of Candida in the presence of EO was quantified using XTT viability assay. Efficacy on reduction of germ tube formation was evaluated using standard protocol. Visualisation of biofilm formation and progression under the EO treatment were done using scanning electron microscope (SEM) and Time lapses microscope respectively. In-vivo toxicity of EO was determined using Galleria mellonella larvae. Chlorhexidine digluconate: positive control. RESULTS: Eugenol was the main compound of EO. MIC was 1.0 mg/mL. 50% reduction in initial adhesion was achieved by C. albicans, C. tropicalis and C. dubliniensis with 1.0, > 2.0 and 0.34 mg/mL respectively. 0.5 and 1.0 mg/mL significantly inhibit the germ tube formation. MBIC50 for forming biofilms were ≤ 0.35 mg/mL. 1.0 mg/mL prevent biofilm progression of Candida. SEM images exhibited cell wall damages, cellular shrinkages and decreased hyphal formation. No lethal effect was noted with in-vivo experiment model at any concentration tested. CONCLUSION: C. verum leaf oil acts against virulence factors of Candida and does not show any toxicity.


Asunto(s)
Candida/efectos de los fármacos , Cinnamomum zeylanicum/química , Aceites Volátiles , Antifúngicos , Humanos , Factores de Virulencia
5.
Photodiagnosis Photodyn Ther ; 28: 226-233, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31546042

RESUMEN

OBJECTIVE: This study evaluated the effect of hydrogen peroxide addition on ß-cyclodextrin-conjugated methylene blue in antimicrobial photodynamic therapy(a-PDT) in S. mutans biofilm model using laser or light emitting diode (LED) (λ = 660 nm). METHODS: A preliminary assay was performed to evaluate the cytotoxicity of hydrogen peroxide in oral fibroblasts by the colorimetric method (MTT). Afterwards, groups were divided into (n = 3, in triplicate): C (negative control), CX - chlorhexidine 0.2% (positive control), P (methylene blue/ß-cyclodextrin), H (Hydrogen Peroxide at 40 µM), PH, L (Laser), LP, LH (Laser+Hydrogen Peroxide), LPH, LED, LEDP, LEDH, and LEDPH. The biofilm was formed in 24 h with BHI + 1% sucrose (w/v). Light irradiations were conducted with laser, 9 J, 323 J/cm2, 113 s or with LED, 8.1 J, 8.1 J/cm2 for 90 s. Microbial reduction was evaluated by counting the viable microorganisms of the biofilm after the respective treatments, in a selective culture medium, and laser confocal microscopy evaluation. RESULTS: LP, LH, LPH, LEDP, LEDH, and LEDPH groups statistically reduced the counts of S.mutans compared with the C group and the log reductions were of 1.87, 1.94, 2.19, 0.91, 0.92, and 1.33, respectively; the addition of hydrogen peroxide did not potentiate the microbial reductions (LPH and LEDPH) compared with the LP and LEDP groups. CONCLUSION: The association of hydrogen peroxide with the conjugated ß-cyclodextrin nanoparticle as photosensitizer did not result in an enhanced effect of a-PDT; hydrogen peroxide behaved as a photosensitizer, since it reduced the number of S. mutans when associated with laser light.


Asunto(s)
Biopelículas/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Azul de Metileno/farmacología , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Streptococcus mutans/efectos de los fármacos , beta-Ciclodextrinas/farmacología , Viabilidad Microbiana/efectos de los fármacos , Microscopía Confocal , Nanopartículas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...