Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Circ Cardiovasc Interv ; 17(1): e013204, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38152881

RESUMEN

BACKGROUND: Maldistribution of pulmonary blood flow in patients with congenital heart disease impacts exertional performance and pulmonary artery growth. Currently, measurement of relative pulmonary perfusion can only be performed outside the catheterization laboratory. We sought to develop a tool for measuring relative lung perfusion using readily available fluoroscopy sequences. METHODS: A retrospective cohort study was conducted on patients with conotruncal anomalies who underwent lung perfusion scans and subsequent cardiac catheterizations between 2011 and 2022. Inclusion criteria were nonselective angiogram of pulmonary vasculature, oblique angulation ≤20°, and an adequate view of both lung fields. A method was developed and implemented in 3D Slicer's SlicerHeart extension to calculate the amount of contrast that entered each lung field from the start of contrast injection and until the onset of levophase. The predicted perfusion distribution was compared with the measured distribution of pulmonary blood flow and evaluated for correlation, accuracy, and bias. RESULTS: In total, 32% (79/249) of screened studies met the inclusion criteria. A strong correlation between the predicted flow split and the measured flow split was found (R2=0.83; P<0.001). The median absolute error was 6%, and 72% of predictions were within 10% of the true value. Bias was not systematically worse at either extreme of the flow distribution. The prediction was found to be more accurate for either smaller and younger patients (age 0-2 years), for right ventricle injections, or when less cranial angulations were used (≤20°). In these cases (n=40), the prediction achieved R2=0.87, median absolute error of 5.5%, and 78% of predictions were within 10% of the true flow. CONCLUSIONS: The current study demonstrates the feasibility of a novel method for measuring relative lung perfusion using conventional angiograms. Real-time measurement of lung perfusion at the catheterization laboratory has the potential to reduce unnecessary testing, associated costs, and radiation exposure. Further optimization and validation is warranted.


Asunto(s)
Pulmón , Humanos , Recién Nacido , Lactante , Preescolar , Estudios Retrospectivos , Resultado del Tratamiento , Pulmón/diagnóstico por imagen , Pulmón/irrigación sanguínea , Perfusión , Fluoroscopía
2.
Circ Cardiovasc Imaging ; 16(3): e014671, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36866669

RESUMEN

BACKGROUND: In hypoplastic left heart syndrome, tricuspid regurgitation (TR) is associated with circulatory failure and death. We hypothesized that the tricuspid valve (TV) structure of patients with hypoplastic left heart syndrome with a Fontan circulation and moderate or greater TR differs from those with mild or less TR, and that right ventricle volume is associated with TV structure and dysfunction. METHODS: TV of 100 patients with hypoplastic left heart syndrome and a Fontan circulation were modeled using transthoracic 3-dimensional echocardiograms and custom software in SlicerHeart. Associations of TV structure to TR grade and right ventricle function and volume were investigated. Shape parameterization and analysis was used to calculate the mean shape of the TV leaflets, their principal modes of variation, and to characterize associations of TV leaflet shape to TR. RESULTS: In univariate modeling, patients with moderate or greater TR had larger TV annular diameters and area, greater annular distance between the anteroseptal commissure and anteroposterior commissure, greater leaflet billow volume, and more laterally directed anterior papillary muscle angles compared to valves with mild or less TR (all P<0.001). In multivariate modeling greater total billow volume, lower anterior papillary muscle angle, and greater distance between the anteroposterior commissure and anteroseptal commissure were associated with moderate or greater TR (P<0.001, C statistic=0.85). Larger right ventricle volumes were associated with moderate or greater TR (P<0.001). TV shape analysis revealed structural features associated with TR, but also highly heterogeneous TV leaflet structure. CONCLUSIONS: Moderate or greater TR in patients with hypoplastic left heart syndrome with a Fontan circulation is associated with greater leaflet billow volume, a more laterally directed anterior papillary muscle angle, and greater annular distance between the anteroseptal commissure and anteroposterior commissure. However, there is significant heterogeneity of structure in the TV leaflets in regurgitant valves. Given this variability, an image-informed patient-specific approach to surgical planning may be needed to achieve optimal outcomes in this vulnerable and challenging population.


Asunto(s)
Procedimiento de Fontan , Síndrome del Corazón Izquierdo Hipoplásico , Insuficiencia de la Válvula Tricúspide , Humanos , Válvula Tricúspide/diagnóstico por imagen , Válvula Tricúspide/cirugía , Procedimiento de Fontan/efectos adversos , Ventrículos Cardíacos , Síndrome del Corazón Izquierdo Hipoplásico/diagnóstico por imagen , Síndrome del Corazón Izquierdo Hipoplásico/cirugía , Síndrome del Corazón Izquierdo Hipoplásico/complicaciones , Insuficiencia de la Válvula Tricúspide/diagnóstico por imagen , Insuficiencia de la Válvula Tricúspide/etiología , Insuficiencia de la Válvula Tricúspide/cirugía , Estudios Retrospectivos
3.
Ann Thorac Surg Short Rep ; 1(1): 40-45, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36909146

RESUMEN

Background: Transcatheter edge-to-edge valve repair (TEER) is a complex procedure requiring delivery and alignment of the device to the target valve, which can be challenging in atypical or surgically palliated anatomy. We demonstrate application of virtual and physical simulation to plan optimal TEER access and catheter path in normal and congenitally abnormal cardiac anatomy. Methods: Three heart models were created from three-dimensional (3D) images and 3D printed, including two with congenital heart disease. TEER catheter course was simulated both virtually and physically using a commercial TEER system. Results: We demonstrate application of modeling in three patients, including two with congenital heart disease and a Fontan circulation. Access site and pathway to device delivery was simulated by members of a multidisciplinary valve team. Virtual and physical simulation were compared. Conclusions: Virtual and physical simulation of TEER using 3D printed heart models is feasible and may be beneficial for planning and simulation, particularly in patients with complex anatomy. Future work is required to demonstrate application in the clinical setting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA