Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 105(15): 155001, 2010 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-21230913

RESUMEN

The scaling of turbulence-driven heat transport with system size in magnetically confined plasmas is reexamined using first-principles based numerical simulations. Two very different numerical methods are applied to this problem, in order to resolve a long-standing quantitative disagreement, which may have arisen due to inconsistencies in the geometrical approximation. System size effects are further explored by modifying the width of the strong gradient region at fixed system size. The finite width of the strong gradient region in gyroradius units, rather than the finite overall system size, is found to induce the diffusivity reduction seen in global gyrokinetic simulations.

2.
Phys Rev Lett ; 102(19): 195002, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19518964

RESUMEN

The theoretical study of plasma turbulence is of central importance to fusion research. Experimental evidence indicates that the confinement time results mainly from the turbulent transport of energy, the magnitude of which depends on the turbulent state resulting from nonlinear saturation mechanisms, in particular, the self-generation of coherent macroscopic structures and large scale flows. Plasma geometry has a strong impact on the structure and magnitude of these flows and also modifies the mode linear growth rates. Nonlinear global gyrokinetic simulations in realistic tokamak magnetohydrodynamic equilibria show how plasma shape can control the turbulent transport. Results are best described in terms of an effective temperature gradient. With increasing plasma elongation, the nonlinear critical effective gradient is not modified while the stiffness of transport is decreasing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA