Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Bioinform Adv ; 3(1): vbad146, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37881170

RESUMEN

Motivation: Recent advances in highly multiplexed imaging have provided unprecedented insights into the complex cellular organization of tissues, with many applications in translational medicine. However, downstream analyses of multiplexed imaging data face several technical limitations, and although some computational methods and bioinformatics tools are available, deciphering the complex spatial organization of cellular ecosystems remains a challenging problem. Results: To mitigate this problem, we develop a novel computational tool, LOCATOR (anaLysis Of CAncer Tissue micrOenviRonment), for spatial analysis of cancer tissue microenvironments using data acquired from mass cytometry imaging technologies. LOCATOR introduces a graph-based representation of tissue images to describe features of the cellular organization and deploys downstream analysis and visualization utilities that can be used for data-driven patient-risk stratification. Our case studies using mass cytometry imaging data from two well-annotated breast cancer cohorts re-confirmed that the spatial organization of the tumour-immune microenvironment is strongly associated with the clinical outcome in breast cancer. In addition, we report interesting potential associations between the spatial organization of macrophages and patients' survival. Our work introduces an automated and versatile analysis tool for mass cytometry imaging data with many applications in future cancer research projects. Availability and implementation: Datasets and codes of LOCATOR are publicly available at https://github.com/RezvanEhsani/LOCATOR.

2.
Front Physiol ; 14: 1129089, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035678

RESUMEN

Lipid metabolism is essential in maintaining energy homeostasis in multicellular organisms. In vertebrates, the peroxisome proliferator-activated receptors (PPARs, NR1C) regulate the expression of many genes involved in these processes. Atlantic cod (Gadus morhua) is an important fish species in the North Atlantic ecosystem and in human nutrition, with a highly fatty liver. Here we study the involvement of Atlantic cod Ppar a and b subtypes in systemic regulation of lipid metabolism using two model agonists after in vivo exposure. WY-14,643, a specific PPARA ligand in mammals, activated cod Ppara1 and Ppara2 in vitro. In vivo, WY-14,643 caused a shift in lipid transport both at transcriptional and translational level in cod. However, WY-14,643 induced fewer genes in the fatty acid beta-oxidation pathway compared to that observed in rodents. Although GW501516 serves as a specific PPARB/D ligand in mammals, this compound activated cod Ppara1 and Ppara2 as well as Pparb in vitro. In vivo, it further induced transcription of Ppar target genes and caused changes in lipid composition of liver and plasma. The integrative approach provide a foundation for understanding how Ppars are engaged in regulating lipid metabolism in Atlantic cod physiology. We have shown that WY-14,643 and GW501516 activate Atlantic cod Ppara and Pparb, affect genes in lipid metabolism pathways, and induce changes in the lipid composition in plasma and liver microsomal membranes. Particularly, the combined transcriptomic, proteomics and lipidomics analyses revealed that effects of WY-14,643 on lipid metabolism are similar to what is known in mammalian studies, suggesting conservation of Ppara functions in mediating lipid metabolic processes in fish. The alterations in the lipid profiles observed after Ppar agonist exposure suggest that other chemicals with similar Ppar receptor affinities may cause disturbances in the lipid regulation of fish. Model organism: Atlantic cod (Gadus morhua). LSID: urn:lsid:zoobank.org:act:389BE401-2718-4CF2-BBAE-2E13A97A5E7B. COL Identifier: 6K72F.

4.
Nat Commun ; 14(1): 115, 2023 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-36611026

RESUMEN

Aberrant pro-survival signaling is a hallmark of cancer cells, but the response to chemotherapy is poorly understood. In this study, we investigate the initial signaling response to standard induction chemotherapy in a cohort of 32 acute myeloid leukemia (AML) patients, using 36-dimensional mass cytometry. Through supervised and unsupervised machine learning approaches, we find that reduction of extracellular-signal-regulated kinase (ERK) 1/2 and p38 mitogen-activated protein kinase (MAPK) phosphorylation in the myeloid cell compartment 24 h post-chemotherapy is a significant predictor of patient 5-year overall survival in this cohort. Validation by RNA sequencing shows induction of MAPK target gene expression in patients with high phospho-ERK1/2 24 h post-chemotherapy, while proteomics confirm an increase of the p38 prime target MAPK activated protein kinase 2 (MAPKAPK2). In this study, we demonstrate that mass cytometry can be a valuable tool for early response evaluation in AML and elucidate the potential of functional signaling analyses in precision oncology diagnostics.


Asunto(s)
Leucemia Mieloide Aguda , Medicina de Precisión , Humanos , Transducción de Señal , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Fosforilación , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología
5.
BMC Genomics ; 22(1): 832, 2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34789144

RESUMEN

BACKGROUND: The salmon louse (Lepeophtheirus salmonis) is an obligate ectoparasitic copepod living on Atlantic salmon and other salmonids in the marine environment. Salmon lice cause a number of environmental problems and lead to large economical losses in aquaculture every year. In order to develop novel parasite control strategies, a better understanding of the mechanisms of moulting and development of the salmon louse at the transcriptional level is required. METHODS: Three weighted gene co-expression networks were constructed based on the pairwise correlations of salmon louse gene expression profiles at different life stages. Network-based approaches and gene annotation information were applied to identify genes that might be important for the moulting and development of the salmon louse. RNA interference was performed for validation. Regulatory impact factors were calculated for all the transcription factor genes by examining the changes in co-expression patterns between transcription factor genes and deferentially expressed genes in middle stages and moulting stages. RESULTS: Eight gene modules were predicted as important, and 10 genes from six of the eight modules have been found to show observable phenotypes in RNA interference experiments. We knocked down five hub genes from three modules and observed phenotypic consequences in all experiments. In the infection trial, no copepodids with a RAB1A-like gene knocked down were found on fish, while control samples developed to chalimus-1 larvae. Also, a FOXO-like transcription factor obtained highest scores in the regulatory impact factor calculation. CONCLUSIONS: We propose a gene co-expression network-based approach to identify genes playing an important role in the moulting and development of salmon louse. The RNA interference experiments confirm the effectiveness of our approach and demonstrated the indispensable role of a RAB1A-like gene in the development of the salmon louse. We propose that our approach could be generalized to identify important genes associated with a phenotype of interest in other organisms.


Asunto(s)
Copépodos , Enfermedades de los Peces , Phthiraptera , Salmo salar , Animales , Copépodos/genética , Enfermedades de los Peces/genética , Muda/genética , Salmo salar/genética , Transcriptoma
6.
BMC Genomics ; 22(1): 826, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789167

RESUMEN

BACKGROUND: SNP arrays, short- and long-read genome sequencing are genome-wide high-throughput technologies that may be used to assay copy number variants (CNVs) in a personal genome. Each of these technologies comes with its own limitations and biases, many of which are well-known, but not all of them are thoroughly quantified. RESULTS: We assembled an ensemble of public datasets of published CNV calls and raw data for the well-studied Genome in a Bottle individual NA12878. This assembly represents a variety of methods and pipelines used for CNV calling from array, short- and long-read technologies. We then performed cross-technology comparisons regarding their ability to call CNVs. Different from other studies, we refrained from using the golden standard. Instead, we attempted to validate the CNV calls by the raw data of each technology. CONCLUSIONS: Our study confirms that long-read platforms enable recalling CNVs in genomic regions inaccessible to arrays or short reads. We also found that the reproducibility of a CNV by different pipelines within each technology is strongly linked to other CNV evidence measures. Importantly, the three technologies show distinct public database frequency profiles, which differ depending on what technology the database was built on.


Asunto(s)
Variaciones en el Número de Copia de ADN , Polimorfismo de Nucleótido Simple , Genoma , Genómica , Reproducibilidad de los Resultados
7.
BMC Pulm Med ; 21(1): 342, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34727907

RESUMEN

OBJECTIVE: Little is known concerning the stability of the lower airway microbiome. We have compared the microbiota identified by repeated bronchoscopy in healthy subjects and patients with ostructive lung diseaseases (OLD). METHODS: 21 healthy controls and 41 patients with OLD completed two bronchoscopies. In addition to negative controls (NCS) and oral wash (OW) samples, we gathered protected bronchoalveolar lavage in two fractions (PBAL1 and PBAL2) and protected specimen brushes (PSB). After DNA extraction, we amplified the V3V4 region of the 16S rRNA gene, and performed paired-end sequencing (Illumina MiSeq). Initial bioinformatic processing was carried out in the QIIME-2 pipeline, identifying amplicon sequence variants (ASVs) with the DADA2 algorithm. Potentially contaminating ASVs were identified and removed using the decontam package in R and the sequenced NCS. RESULTS: A final table of 551 ASVs consisted of 19 × 106 sequences. Alpha diversity was lower in the second exam for OW samples, and borderline lower for PBAL1, with larger differences in subjects not having received intercurrent antibiotics. Permutational tests of beta diversity indicated that within-individual changes were significantly lower than between-individual changes. A non-parametric trend test showed that differences in composition between the two exams (beta diversity) were largest in the PSBs, and that these differences followed a pattern of PSB > PBAL2 > PBAL1 > OW. Time between procedures was not associated with increased diversity. CONCLUSION: The airways microbiota varied between examinations. However, there is compositional microbiota stability within a person, beyond that of chance, supporting the notion of a transient airways microbiota with a possibly more stable individual core microbiome.


Asunto(s)
Líquido del Lavado Bronquioalveolar/microbiología , Enfermedades Pulmonares Obstructivas/microbiología , Microbiota , Anciano , Anciano de 80 o más Años , Antibacterianos/uso terapéutico , Lavado Broncoalveolar , Broncoscopía , Clasificación , Humanos , Enfermedades Pulmonares Obstructivas/tratamiento farmacológico , Masculino , Microbiota/efectos de los fármacos , Persona de Mediana Edad , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
8.
Genomics ; 113(6): 3666-3680, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34403763

RESUMEN

Copepods encompass numerous ecological roles including parasites, detrivores and phytoplankton grazers. Nonetheless, copepod genome assemblies remain scarce. Lepeophtheirus salmonis is an economically and ecologically important ectoparasitic copepod found on salmonid fish. We present the 695.4 Mbp L. salmonis genome assembly containing ≈60% repetitive regions and 13,081 annotated protein-coding genes. The genome comprises 14 autosomes and a ZZ-ZW sex chromosome system. Assembly assessment identified 92.4% of the expected arthropod genes. Transcriptomics supported annotation and indicated a marked shift in gene expression after host attachment, including apparent downregulation of genes related to circadian rhythm coinciding with abandoning diurnal migration. The genome shows evolutionary signatures including loss of genes needed for peroxisome biogenesis, presence of numerous FNII domains, and an incomplete heme homeostasis pathway suggesting heme proteins to be obtained from the host. Despite repeated development of resistance against chemical treatments L. salmonis exhibits low numbers of many genes involved in detoxification.


Asunto(s)
Copépodos , Enfermedades de los Peces , Parásitos , Aclimatación , Animales , Copépodos/genética , Copépodos/parasitología , Enfermedades de los Peces/genética , Parásitos/genética , Transcriptoma
9.
Sci Rep ; 11(1): 10546, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006915

RESUMEN

How an organism copes with chemicals is largely determined by the genes and proteins that collectively function to defend against, detoxify and eliminate chemical stressors. This integrative network includes receptors and transcription factors, biotransformation enzymes, transporters, antioxidants, and metal- and heat-responsive genes, and is collectively known as the chemical defensome. Teleost fish is the largest group of vertebrate species and can provide valuable insights into the evolution and functional diversity of defensome genes. We have previously shown that the xenosensing pregnane x receptor (pxr, nr1i2) is lost in many teleost species, including Atlantic cod (Gadus morhua) and three-spined stickleback (Gasterosteus aculeatus), but it is not known if compensatory mechanisms or signaling pathways have evolved in its absence. In this study, we compared the genes comprising the chemical defensome of five fish species that span the teleosteii evolutionary branch often used as model species in toxicological studies and environmental monitoring programs: zebrafish (Danio rerio), medaka (Oryzias latipes), Atlantic killifish (Fundulus heteroclitus), Atlantic cod, and three-spined stickleback. Genome mining revealed evolved differences in the number and composition of defensome genes that can have implication for how these species sense and respond to environmental pollutants, but we did not observe any candidates of compensatory mechanisms or pathways in cod and stickleback in the absence of pxr. The results indicate that knowledge regarding the diversity and function of the defensome will be important for toxicological testing and risk assessment studies.


Asunto(s)
Peces/fisiología , Modelos Biológicos , Animales , Biotransformación , Peces/clasificación , Genoma , Filogenia , Medición de Riesgo , Especificidad de la Especie , Xenobióticos/farmacocinética , Pez Cebra/genética
10.
Bioinformatics ; 37(13): 1876-1883, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-33459766

RESUMEN

MOTIVATION: Single nucleotide polymorphism (SNP) genotyping arrays remain an attractive platform for assaying copy number variants (CNVs) in large population-wide cohorts. However, current tools for calling CNVs are still prone to extensive false positive calls when applied to biobank scale arrays. Moreover, there is a lack of methods exploiting cohorts with trios available (e.g. nuclear family) to assist in quality control and downstream analyses following the calling. RESULTS: We developed SeeCiTe (Seeing CNVs in Trios), a novel CNV-quality control tool that postprocesses output from current CNV-calling tools exploiting child-parent trio data to classify calls in quality categories and provide a set of visualizations for each putative CNV call in the offspring. We apply it to the Norwegian Mother, Father and Child Cohort Study (MoBa) and show that SeeCiTe improves the specificity and sensitivity compared to the common empiric filtering strategies. To our knowledge, it is the first tool that utilizes probe-level CNV data in trios (and singletons) to systematically highlight potential artifacts and visualize signal intensities in a streamlined fashion suitable for biobank scale studies. AVAILABILITY AND IMPLEMENTATION: The software is implemented in R with the source code freely available at https://github.com/aksenia/SeeCiTe. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

11.
Sci Total Environ ; 755(Pt 1): 142904, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33138996

RESUMEN

Because of their global consumption and persistence, per- and polyfluoroalkyl substances (PFASs), are ubiquitously distributed in the environment, as well as in wildlife and humans. In the present study, we have employed an ex vivo organ culture technique, based on the floating agarose method, of Atlantic cod ovarian tissue to investigate the effects of three different concentrations of PFOS, PFOA (1, 5 and 25 µM) and PFNA (0.5, 5 and 50 µM), used singly and in also in combination (1×, 20× and 100×). In the 1× exposure mixture, concentrations were decided based on their proportional levels (in molar equivalents) relative to PFOS, which is the most abundant PFAS in cod liver from a 2013 screening project. To investigate the detailed underlying mechanisms and biological processes, transcriptome sequencing was performed on exposed ovarian tissue. The number of differentially expressed genes (DEGs) having at least 0.75 log2-fold change was elevated in high, compared to low and medium concentration exposures. The highest PFNA, PFOA and PFOS concentrations, and the highest (100×) mixture exposure, showed 40, 68, 1295, and 802 DEGs, respectively. The latter two exposure groups shared a maximum of 438 DEGs. In addition, they both shared the majority of functionally enriched pathways belonging to biological processes such as cellular signaling, cell adhesion, lipid metabolism, immunological responses, cancer, reproduction and metabolism. Shortlisted DEGs that were specifically annotated to reproduction associated gene ontology (GO) terms were observed only in the highest PFOS and mixture exposure groups. These transcripts contributed to ovarian key events such as steroidogenesis (star, cyp19a1a), oocyte growth (amh), maturation (igfbp5b, tgfß2, tgfß3), and ovulation (pgr, mmp2). Contrary to other PFAS congeners, the highest PFOS concentration showed almost similar transcript expression patterns compared to the highest mixture exposure group. This indicates that PFOS is the active component of the mixture that significantly altered the normal functioning of female gonads, and possibly leading to serious reproductive consequences in teleosts.


Asunto(s)
Ácidos Alcanesulfónicos , Fenómenos Biológicos , Fluorocarburos , Gadus morhua , Ácidos Alcanesulfónicos/toxicidad , Animales , Femenino , Fluorocarburos/toxicidad , Gadus morhua/genética , Humanos , Hígado , Transcriptoma
12.
Front Mol Biosci ; 7: 591406, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33324679

RESUMEN

The availability of genome sequences, annotations, and knowledge of the biochemistry underlying metabolic transformations has led to the generation of metabolic network reconstructions for a wide range of organisms in bacteria, archaea, and eukaryotes. When modeled using mathematical representations, a reconstruction can simulate underlying genotype-phenotype relationships. Accordingly, genome-scale metabolic models (GEMs) can be used to predict the response of organisms to genetic and environmental variations. A bottom-up reconstruction procedure typically starts by generating a draft model from existing annotation data on a target organism. For model species, this part of the process can be straightforward, due to the abundant organism-specific biochemical data. However, the process becomes complicated for non-model less-annotated species. In this paper, we present a draft liver reconstruction, ReCodLiver0.9, of Atlantic cod (Gadus morhua), a non-model teleost fish, as a practicable guide for cases with comparably few resources. Although the reconstruction is considered a draft version, we show that it already has utility in elucidating metabolic response mechanisms to environmental toxicants by mapping gene expression data of exposure experiments to the resulting model.

13.
Environ Res ; 189: 109906, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32980003

RESUMEN

In the present study, a previously capped waste disposal site at Kollevåg (Norway) was selected to study the effects of contaminant leakage on biomarkers associated with Atlantic cod (Gadus morhua) reproductive endocrinology and development. Immature cod were caged for 6 weeks at 3 locations, selected to achieve a spatial gradient of contamination, and compared to a reference station. Quantitative transcriptomic, and lipidomic analysis was used to evaluate the effects of the potential complex contaminant mixture on ovarian developmental and endocrine physiology. The number of expressed transcripts, with 0.75 log2-fold differential expression or more, varied among stations and paralleled the severity of contamination. Particularly, significant bioaccumulation of ∑PCB-7, ∑DDTs and ∑PBDEs were observed at station 1, compared to the other station, including the reference station. Respectively 1416, 698 and 719 differentially expressed genes (DEGs), were observed at stations 1, 2 and 3, compared to the reference station, with transcripts belonging to steroid hormone synthesis pathway being significantly upregulation. Transcription factors such as esr2 and ahr2 were increased at all three stations, with highest fold-change at Station 1. MetaCore pathway maps identified affected pathways that are involved in ovarian physiology, where some unique pathways were significantly affected at each station. For the lipidomics, sphingolipid metabolism was particularly affected at station 1, and these effects paralleled the high contaminant burden at this station. Overall, our findings showed a novel and direct association between contaminant burden and ovarian toxicological and endocrine physiological responses in cod caged at the capped Kollevåg waste disposal site.


Asunto(s)
Gadus morhua , Animales , Gadus morhua/genética , Lipidómica , Noruega , Transcriptoma , Instalaciones de Eliminación de Residuos
14.
Proteomics ; 20(21-22): e2000009, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32937025

RESUMEN

Mass spectrometry (MS)-based quantitative proteomics experiments typically assay a subset of up to 60% of the ≈20 000 human protein coding genes. Computational methods for imputing the missing values using RNA expression data usually allow only for imputations of proteins measured in at least some of the samples. In silico methods for comprehensively estimating abundances across all proteins are still missing. Here, a novel method is proposed using deep learning to extrapolate the observed protein expression values in label-free MS experiments to all proteins, leveraging gene functional annotations and RNA measurements as key predictive attributes. This method is tested on four datasets, including human cell lines and human and mouse tissues. This method predicts the protein expression values with average R2 scores between 0.46 and 0.54, which is significantly better than predictions based on correlations using the RNA expression data alone. Moreover, it is demonstrated that the derived models can be "transferred" across experiments and species. For instance, the model derived from human tissues gave a R2=0.51 when applied to mouse tissue data. It is concluded that protein abundances generated in label-free MS experiments can be computationally predicted using functional annotated attributes and can be used to highlight aberrant protein abundance values.


Asunto(s)
Aprendizaje Profundo , Animales , Espectrometría de Masas , Ratones , Anotación de Secuencia Molecular , Proteínas , Proteómica
15.
Cell ; 182(1): 226-244.e17, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32649875

RESUMEN

Lung cancer in East Asia is characterized by a high percentage of never-smokers, early onset and predominant EGFR mutations. To illuminate the molecular phenotype of this demographically distinct disease, we performed a deep comprehensive proteogenomic study on a prospectively collected cohort in Taiwan, representing early stage, predominantly female, non-smoking lung adenocarcinoma. Integrated genomic, proteomic, and phosphoproteomic analysis delineated the demographically distinct molecular attributes and hallmarks of tumor progression. Mutational signature analysis revealed age- and gender-related mutagenesis mechanisms, characterized by high prevalence of APOBEC mutational signature in younger females and over-representation of environmental carcinogen-like mutational signatures in older females. A proteomics-informed classification distinguished the clinical characteristics of early stage patients with EGFR mutations. Furthermore, integrated protein network analysis revealed the cellular remodeling underpinning clinical trajectories and nominated candidate biomarkers for patient stratification and therapeutic intervention. This multi-omic molecular architecture may help develop strategies for management of early stage never-smoker lung adenocarcinoma.


Asunto(s)
Progresión de la Enfermedad , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteogenómica , Fumar/genética , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinógenos/toxicidad , Estudios de Cohortes , Citosina Desaminasa/metabolismo , Asia Oriental , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Genoma Humano , Humanos , Metaloproteinasas de la Matriz/metabolismo , Mutación/genética , Análisis de Componente Principal
16.
Clin Epigenetics ; 12(1): 109, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32678018

RESUMEN

BACKGROUND: Current technology allows rapid assessment of DNA sequences and methylation levels at a single-site resolution for hundreds of thousands of sites in the human genome, in thousands of individuals simultaneously. This has led to an increase in epigenome-wide association studies (EWAS) of complex traits, particularly those that are poorly explained by previous genome-wide association studies (GWAS). However, the genome and epigenome are intertwined, e.g., DNA methylation is known to affect gene expression through, for example, genomic imprinting. There is thus a need to go beyond single-omics data analyses and develop interaction models that allow a meaningful combination of information from EWAS and GWAS. RESULTS: We present two new methods for genetic association analyses that treat offspring DNA methylation levels as environmental exposure. Our approach searches for statistical interactions between SNP alleles and DNA methylation (G ×Me) and between parent-of-origin effects and DNA methylation (PoO ×Me), using case-parent triads or dyads. We use summarized methylation levels over nearby genomic region to ease biological interpretation. The methods were tested on a dataset of parent-offspring dyads, with EWAS data on the offspring. Our results showed that methylation levels around a SNP can significantly alter the estimated relative risk. Moreover, we show how a control dataset can identify false positives. CONCLUSIONS: The new methods, G ×Me and PoO ×Me, integrate DNA methylation in the assessment of genetic relative risks and thus enable a more comprehensive biological interpretation of genome-wide scans. Moreover, our strategy of condensing DNA methylation levels within regions helps overcome specific disadvantages of using sparse chip-based measurements. The methods are implemented in the freely available R package Haplin ( https://cran.r-project.org/package=Haplin ), enabling fast scans of multi-omics datasets.


Asunto(s)
Metilación de ADN , Exposición a Riesgos Ambientales/efectos adversos , Estudio de Asociación del Genoma Completo/métodos , Polimorfismo de Nucleótido Simple , Estudios de Casos y Controles , Islas de CpG , Metilación de ADN/efectos de los fármacos , Femenino , Predisposición Genética a la Enfermedad , Impresión Genómica , Humanos , Masculino , Padres
17.
Mar Pollut Bull ; 154: 111102, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32319925

RESUMEN

Increased exploitation of resources in sensitive marine ecosystems emphasizes the importance of knowledge regarding ecological impacts. However, current bio-monitoring practices are limited in terms of target-organisms and temporal resolution. Hence, developing new technologies is vital for enhanced ecosystem understanding. In this study, we have applied a prototype version of a phylogenetic microarray to assess the eukaryote community structures of marine sediments from an area with ongoing oil and gas drilling activity. The results were compared with data from both sequencing (metabarcoding) and morphology-based monitoring to evaluate whether microarrays were capable of detecting ecosystem disturbances. A significant correlation between microarray data and chemical pollution indicators, as well as sequencing-based results, was demonstrated, and several potential indicator organisms for pollution-associated parameters were identified, among them a large fraction of microorganisms not covered by traditional morphology-based monitoring. This suggests that microarrays have a potential in future environmental monitoring.


Asunto(s)
Ecosistema , Eucariontes , Biodiversidad , Monitoreo del Ambiente , Sedimentos Geológicos , Filogenia
18.
Acta Neuropathol Commun ; 8(1): 55, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32317022

RESUMEN

The etiology of Parkinson's disease is largely unknown. Genome-wide transcriptomic studies in bulk brain tissue have identified several molecular signatures associated with the disease. While these studies have the potential to shed light into the pathogenesis of Parkinson's disease, they are also limited by two major confounders: RNA post-mortem degradation and heterogeneous cell type composition of bulk tissue samples. We performed RNA sequencing following ribosomal RNA depletion in the prefrontal cortex of 49 individuals from two independent case-control cohorts. Using cell type specific markers, we estimated the cell type composition for each sample and included this in our analysis models to compensate for the variation in cell type proportions. Ribosomal RNA depletion followed by capture by random primers resulted in substantially more even transcript coverage, compared to poly(A) capture, in post-mortem tissue. Moreover, we show that cell type composition is a major confounder of differential gene expression analysis in the Parkinson's disease brain. Accounting for cell type proportions attenuated numerous transcriptomic signatures that have been previously associated with Parkinson's disease, including vesicle trafficking, synaptic transmission, immune and mitochondrial function. Conversely, pathways related to endoplasmic reticulum, lipid oxidation and unfolded protein response were strengthened and surface as the top differential gene expression signatures in the Parkinson's disease prefrontal cortex. Our results indicate that differential gene expression signatures in Parkinson's disease bulk brain tissue are significantly confounded by underlying differences in cell type composition. Modeling cell type heterogeneity is crucial in order to unveil transcriptomic signatures that represent regulatory changes in the Parkinson's disease brain and are, therefore, more likely to be associated with underlying disease mechanisms.


Asunto(s)
Encéfalo/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Análisis de Secuencia de ARN/métodos , Transcriptoma , Humanos
19.
FEMS Microbiol Ecol ; 96(5)2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32301987

RESUMEN

Permafrost underlies a large portion of the land in the Northern Hemisphere. It is proposed to be an extreme habitat and home for cold-adaptive microbial communities. Upon thaw permafrost is predicted to exacerbate increasing global temperature trend, where awakening microbes decompose millennia old carbon stocks. Yet our knowledge on composition, functional potential and variance of permafrost microbiome remains limited. In this study, we conducted a deep comparative metagenomic analysis through a 2 m permafrost core from Svalbard, Norway to determine key permafrost microbiome in this climate sensitive island ecosystem. To do so, we developed comparative metagenomics methods on metagenomic-assembled genomes (MAG). We found that community composition in Svalbard soil horizons shifted markedly with depth: the dominant phylum switched from Acidobacteria and Proteobacteria in top soils (active layer) to Actinobacteria, Bacteroidetes, Chloroflexi and Proteobacteria in permafrost layers. Key metabolic potential propagated through permafrost depths revealed aerobic respiration and soil organic matter decomposition as key metabolic traits. We also found that Svalbard MAGs were enriched in genes involved in regulation of ammonium, sulfur and phosphate. Here, we provide a new perspective on how permafrost microbiome is shaped to acquire resources in competitive and limited resource conditions of deep Svalbard soils.


Asunto(s)
Hielos Perennes , Metagenoma , Noruega , Suelo , Microbiología del Suelo , Svalbard
20.
BMC Bioinformatics ; 21(1): 110, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32183729

RESUMEN

BACKGROUND: With the cost of DNA sequencing decreasing, increasing amounts of RNA-Seq data are being generated giving novel insight into gene expression and regulation. Prior to analysis of gene expression, the RNA-Seq data has to be processed through a number of steps resulting in a quantification of expression of each gene/transcript in each of the analyzed samples. A number of workflows are available to help researchers perform these steps on their own data, or on public data to take advantage of novel software or reference data in data re-analysis. However, many of the existing workflows are limited to specific types of studies. We therefore aimed to develop a maximally general workflow, applicable to a wide range of data and analysis approaches and at the same time support research on both model and non-model organisms. Furthermore, we aimed to make the workflow usable also for users with limited programming skills. RESULTS: Utilizing the workflow management system Snakemake and the package management system Conda, we have developed a modular, flexible and user-friendly RNA-Seq analysis workflow: RNA-Seq Analysis Snakemake Workflow (RASflow). Utilizing Snakemake and Conda alleviates challenges with library dependencies and version conflicts and also supports reproducibility. To be applicable for a wide variety of applications, RASflow supports the mapping of reads to both genomic and transcriptomic assemblies. RASflow has a broad range of potential users: it can be applied by researchers interested in any organism and since it requires no programming skills, it can be used by researchers with different backgrounds. The source code of RASflow is available on GitHub: https://github.com/zhxiaokang/RASflow. CONCLUSIONS: RASflow is a simple and reliable RNA-Seq analysis workflow covering many use cases.


Asunto(s)
Biología Computacional/métodos , RNA-Seq/métodos , Animales , Secuencia de Bases , Humanos , Masculino , Ratones , Neoplasias de la Próstata/genética , Reproducibilidad de los Resultados , Programas Informáticos , Transcriptoma , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...