Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Chem Neurosci ; 14(6): 1166-1180, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36848624

RESUMEN

Modulation of α1ß2γ2GABA-A receptor subpopulation expressed in the basal ganglia region is a conceptually novel mode of pharmacological strategy that offers prospects to tackle a variety of neurological dysfunction. Although clinical findings provided compelling evidence for the validity of this strategy, the current chemical space of molecules able to modulate the α1/γ2 interface of the GABA-A receptor is limited to imidazo[1,2-a]pyridine derivatives that undergo rapid biotransformation. In response to a deficiency in the chemical repertoire of GABA-A receptors, we identified a series of 2-(4-fluorophenyl)-1H-benzo[d]imidazoles as positive allosteric modulators (PAMs) with improved metabolic stability and reduced potential for hepatotoxicity, where lead molecules 9 and 23 displayed interesting features in a preliminary investigation. We further disclose that the identified scaffold shows a preference for interaction with the α1/γ2 interface of the GABA-A receptor, delivering several PAMs of the GABA-A receptor. The present work provides useful chemical templates to further explore the therapeutic potential of GABA-A receptor ligands and enriches the chemical space of molecules suitable for the interaction with the α1/γ2 interface.


Asunto(s)
Imidazoles , Receptores de GABA-A , Receptores de GABA-A/metabolismo , Imidazoles/farmacología , Ligandos , Regulación Alostérica
2.
J Enzyme Inhib Med Chem ; 38(1): 2158822, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36629422

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative brain disease. Thus, drugs including donepezil, rivastigmine, and galantamine are not entirely effective in the treatment of this multifactorial disease. The present study evaluates eight derivatives (3a-3h) as candidates with stronger anti-AD potential but with less side effects. Reactive oxygen species (ROS) assays were used to assess oxidative stress which involve in the neurodegeneration. The neuroprotective properties of 3e against oxidative stress were done in three experiments using MTT test. The anti-AD potential was determined based on their anticholinesterase inhibition ability, determined using Ellman's method, Aß aggregation potential according to thioflavin (Th) fluorescence assay, and their antioxidative and anti-inflammatory activities. Compound 3e exhibited moderate cholinesterase inhibition activity (AChE, IC50 = 0.131 µM; BuChE, IC50 = 0.116 µM; SI = 1.13), significant inhibition of Aß(1-42) aggregation (55.7%, at 5 µM) and acceptable neuroprotective activity. Extensive analysis of in vitro and in vivo assays indicates that new cyclopentaquinoline derivatives offer promise as candidates for new anti-AD drugs.


Asunto(s)
Enfermedad de Alzheimer , Fármacos Neuroprotectores , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Neuroprotección , Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Estrés Oxidativo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
3.
Int J Mol Sci ; 23(13)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35806035

RESUMEN

One of the main goals of recent bioinorganic chemistry studies has been to design and synthesize novel substances to treat human diseases. The promising compounds are metal-based and metal ion binding components such as vanadium-based compounds. The potential anticancer action of vanadium-based compounds is one of area of investigation in this field. In this study, we present five oxovanadium(IV) and dioxovanadium(V) complexes as potential PTP1B inhibitors with anticancer activity against the MCF-7 breast cancer cell line, the triple negative MDA-MB-231 breast cancer cell line, and the human keratinocyte HaCaT cell line. We observed that all tested compounds were effective inhibitors of PTP1B, which correlates with anticancer activity. [VO(dipic)(dmbipy)]·2 H2O (Compound 4) and [VOO(dipic)](2-phepyH)·H2O (Compound 5) possessed the greatest inhibitory effect, with IC50 185.4 ± 9.8 and 167.2 ± 8.0 nM, respectively. To obtain a better understanding of the relationship between the structure of the examined compounds and their activity, we performed a computer simulation of their binding inside the active site of PTP1B. We observed a stronger binding of complexes containing dipicolinic acid with PTP1B. Based on our simulations, we suggested that the studied complexes exert their activity by stabilizing the WPD-loop in an open position and limiting access to the P-loop.


Asunto(s)
Neoplasias de la Mama , Compuestos Organometálicos , Simulación por Computador , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Femenino , Humanos , Compuestos Organometálicos/química , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Vanadio/química , Vanadio/farmacología
4.
ACS Chem Neurosci ; 12(13): 2503-2519, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34100603

RESUMEN

This article describes the discovery of novel potent muscarinic receptor antagonists identified during a search for more active histamine H3 receptor (H3R) ligands. The idea was to replace the flexible seven methylene linker with a semirigid 1,4-cyclohexylene or p-phenylene substituted group of the previously described histamine H3R antagonists ADS1017 and ADS1020. These simple structural modifications of the histamine H3R antagonist led to the emergence of additional pharmacological effects, some of which unexpectedly showed strong antagonist potency at muscarinic receptors. This paper reports the routes of synthesis and pharmacological characterization of guanidine derivatives, a novel chemotype of muscarinic receptor antagonists binding to the human muscarinic M2 and M4 receptors (hM2R and hM4R, respectively) in nanomolar concentration ranges. The affinities of the newly synthesized ADS10227 (1-{4-{4-{[4-(phenoxymethyl)cyclohexyl]methyl}piperazin-1-yl}but-1-yl}-1-(benzyl)guanidine) at hM2R and hM4R were 2.8 nM and 5.1 nM, respectively.


Asunto(s)
Antagonistas de los Receptores Histamínicos H3 , Receptores Histamínicos H3 , Colinérgicos , Guanidinas/farmacología , Histamina , Antagonistas de los Receptores Histamínicos , Antagonistas de los Receptores Histamínicos H3/farmacología , Humanos , Antagonistas Muscarínicos , Relación Estructura-Actividad
5.
Eur J Med Chem ; 218: 113397, 2021 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-33838585

RESUMEN

Looking for an effective anti-Alzheimer's agent is very challenging; however, a multifunctional ligand strategy may be a promising solution for the treatment of this complex disease. We herein present the design, synthesis and biological evaluation of novel hydroxyethylamine derivatives displaying unique, multiple properties that have not been previously reported. The original mechanism of action combines inhibitory activity against disease-modifying targets: ß-secretase enzyme (BACE1) and amyloid ß (Aß) aggregation, along with an effect on targets associated with symptom relief - inhibition of butyrylcholinesterase (BuChE) and γ-aminobutyric acid transporters (GATs). Among the obtained molecules, compound 36 exhibited the most balanced and broad activity profile (eeAChE IC50 = 2.86 µM; eqBuChE IC50 = 60 nM; hBuChE IC50 = 20 nM; hBACE1 IC50 = 5.9 µM; inhibition of Aß aggregation = 57.9% at 10 µM; mGAT1 IC50 = 10.96 µM; and mGAT2 IC50 = 19.05 µM). Moreover, we also identified 31 as the most potent mGAT4 and hGAT3 inhibitor (IC50 = 5.01 µM and IC50 = 2.95 µM, respectively), with high selectivity over other subtypes. Compounds 36 and 31 represent new anti-Alzheimer agents that can ameliorate cognitive decline and modify the progress of disease.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Descubrimiento de Drogas , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Fármacos Neuroprotectores/farmacología , Enfermedad de Alzheimer/metabolismo , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Relación Estructura-Actividad
6.
Biomolecules ; 11(2)2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33513955

RESUMEN

Poisoning with organophosphorus compounds used as pesticides or misused as chemical weapons remains a serious threat to human health and life. Their toxic effects result from irreversible blockade of the enzymes acetylcholinesterase and butyrylcholinesterase, which causes overstimulation of the cholinergic system and often leads to serious injury or death. Treatment of organophosphorus poisoning involves, among other strategies, the administration of oxime compounds. Oximes reactivate cholinesterases by breaking the covalent bond between the serine residue from the enzyme active site and the phosphorus atom of the organophosphorus compound. Although the general mechanism of reactivation has been known for years, the exact molecular aspects determining the efficiency and selectivity of individual oximes are still not clear. This hinders the development of new active compounds. In our research, using relatively simple and widely available molecular docking methods, we investigated the reactivation of acetyl- and butyrylcholinesterase blocked by sarin and tabun. For the selected oximes, their binding modes at each step of the reactivation process were identified. Amino acids essential for effective reactivation and those responsible for the selectivity of individual oximes against inhibited acetyl- and butyrylcholinesterase were identified. This research broadens the knowledge about cholinesterase reactivation and demonstrates the usefulness of molecular docking in the study of this process. The presented observations and methods can be used in the future to support the search for new effective reactivators.


Asunto(s)
Acetilcolinesterasa/metabolismo , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Reactivadores de la Colinesterasa/farmacología , Simulación del Acoplamiento Molecular , Animales , Dominio Catalítico , Análisis por Conglomerados , Activación Enzimática , Humanos , Ligandos , Ratones , Modelos Moleculares , Organofosfatos/química , Oximas/química , Fósforo/química , Unión Proteica , Biosíntesis de Proteínas , Conformación Proteica , Teoría Cuántica , Sarín/química
7.
J Enzyme Inhib Med Chem ; 36(1): 437-449, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33467931

RESUMEN

The pyridinium-2-carbaldoximes with quinolinium carboxamide moiety were designed and synthesised as cholinesterase reactivators. The prepared compounds showed intermediate-to-high inhibition of both cholinesterases when compared to standard oximes. Their reactivation ability was evaluated in vitro on human recombinant acetylcholinesterase (hrAChE) and human recombinant butyrylcholinesterase (hrBChE) inhibited by nerve agent surrogates (NIMP, NEMP, and NEDPA) or paraoxon. In the reactivation screening, one compound was able to reactivate hrAChE inhibited by all used organophosphates and two novel compounds were able to reactivate NIMP/NEMP-hrBChE. The reactivation kinetics revealed compound 11 that proved to be excellent reactivator of paraoxon-hrAChE better to obidoxime and showed increased reactivation of NIMP/NEMP-hrBChE, although worse to obidoxime. The molecular interactions of studied reactivators were further identified by in silico calculations. Molecular modelling results revealed the importance of creation of the pre-reactivation complex that could lead to better reactivation of both cholinesterases together with reducing particular interactions for lower intrinsic inhibition by the oxime.


Asunto(s)
Inhibidores de la Colinesterasa/farmacología , Compuestos de Piridinio/farmacología , Compuestos de Quinolinio/farmacología , Acetilcolinesterasa/metabolismo , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Compuestos de Piridinio/síntesis química , Compuestos de Piridinio/química , Compuestos de Quinolinio/síntesis química , Compuestos de Quinolinio/química , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
8.
J Enzyme Inhib Med Chem ; 35(1): 1944-1952, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33092411

RESUMEN

Effective therapy of Alzheimer's disease (AD) requires treatment with a combination of drugs that modulate various pathomechanisms contributing to the disease. In our research, we have focused on the development of multi-target-directed ligands - 5-HT6 receptor antagonists and cholinesterase inhibitors - with disease-modifying properties. We have performed extended in vitro (FRET assay) and in cellulo (Escherichia coli model of protein aggregation) studies on their ß-secretase, tau, and amyloid ß aggregation inhibitory activity. Within these multifunctional ligands, we have identified compound 17 with inhibitory potency against tau and amyloid ß aggregation in in cellulo assay of 59% and 56% at 10 µM, respectively, hBACE IC50=4 µM, h5TH6 K i=94 nM, hAChE IC50=26 nM, and eqBuChE IC50=5 nM. This study led to the development of multifunctional ligands with a broad range of biological activities crucial not only for the symptomatic but also for the disease-modifying treatment of AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Inhibidores de la Colinesterasa/química , Colinesterasas/metabolismo , Receptores de Serotonina/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/prevención & control , Inhibidores de la Colinesterasa/metabolismo , Diseño de Fármacos , Escherichia coli , Transferencia Resonante de Energía de Fluorescencia , Humanos , Ligandos , Modelos Moleculares , Agregado de Proteínas , Relación Estructura-Actividad
9.
Molecules ; 25(11)2020 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-32503288

RESUMEN

The inverse correlation observed between Alzheimer's disease (AD) and cancer has prompted us to look for cholinesterase-inhibiting activity in phenothiazine derivatives that possess anticancer properties. With the use of in silico and in vitro screening methods, our study found a new biological activity in anticancer polycyclic, tricyclic, and tetracyclic compounds. The virtual screening of a library of 120 ligands, which are the derivatives of azaphenothiazine, led to the identification of 25 compounds that can act as potential inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Biological assays revealed the presence of selective inhibitors of eeAChE (electric eel AChE) or eqBuChE (equine serum BuChE) and nonselective inhibitors of both enzymes among the tested compounds. Their potencies against eeAChE were in a submicromolar-to-micromolar range with IC50 values from 0.78 to 19.32 µM, while their IC50 values against eqBuChE ranged from 0.46 to 10.38 µM. The most potent among the compounds tested was the tetracyclic derivative, 6-(4-diethylaminobut-2-ynyl)-9-methylthioquinobenzothiazine 24, which was capable of inhibiting both enzymes. 9-Fluoro-6-(1-piperidylethyl)quinobenzothiazine 23 was found to act as a selective inhibitor of eqBuChE with an IC50 value of 0.46 µM. Compounds with such a dual antitumor and cholinesterase-inhibitory activity can be considered as a valuable combination for the treatment of both cancer and AD prevention. The results presented in this study might open new directions of research on the group of tricyclic phenothiazine derivatives.


Asunto(s)
Antineoplásicos/farmacología , Derivados del Benceno/química , Inhibidores de la Colinesterasa/farmacología , Neoplasias/tratamiento farmacológico , Piridinas/química , Tiazinas/química , Acetilcolinesterasa/química , Animales , Butirilcolinesterasa/química , Proliferación Celular , Electrophorus , Caballos , Humanos , Neoplasias/patología , Células Tumorales Cultivadas
10.
Int J Biol Macromol ; 2020 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-32376252

RESUMEN

γ-Aminobutyric acid transporters are responsible for regulating the GABA level in the synaptic cleft. In this way, they affect GABA-ergic transmission which is important for the proper functioning of the central nervous system. The exact structure of GABA transporters is still unknown, which hinders the design of new, potent and selective inhibitors. For these reasons, we decided to create models of all types of human gamma-aminobutyric acid transporters. They were built based on crystal structures of related proteins from the SLC6 family using homology modeling methods. The reliability of the received models has been confirmed by a number of tools assessing the quality of protein models. To determine the ligand binding mode and indicate the amino acids responsible for selectivity, docking studies and molecular dynamics simulations were performed. The amino acids lining the bottom of the main binding site have a major impact on the selective ligand binding. In addition, an important element is the non-helical fragment of the transmembrane domain 10, and several amino acids within the vestibule of the transporters, which affect its volume. To check whether obtained models are suitable to distinguish active compounds from inactive ones, enrichment plots were prepared. Results suggest that our models may be useful in the search for new inhibitors of GABA transporters of the desired selectivity.

11.
Int J Biol Macromol ; 2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32360967

RESUMEN

γ-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the nervous system. It plays a crucial role in many physiological processes. Upon release from the presynaptic element, it is removed from the synaptic cleft by reuptake due to the action of GABA transporters (GATs). GATs belong to a large SLC6 protein family whose characteristic feature is sodium-dependent relocation of neurotransmitters through the cell membrane. GABA transporters are characterized in many contexts, but their spatial structure is not fully known. They are divided into four types, which differ in occurrence and role. Herein, the special attention was paid to these transporting proteins. This comprehensive review presents the current knowledge about GABA transporters. Their distribution in the body, physiological functions and possible utilization in the therapy of different diseases were fully discussed. The important structural features were described based on published data, including sequence analysis, mutagenesis studies, and comparison with known SLC6 transporters for leucine (LeuT), dopamine (DAT) and serotonin (SERT). Moreover, the most important inhibitors of GABA transporters of various basic scaffolds, diverse selectivity and potency were presented.

12.
Int J Mol Sci ; 21(11)2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32466601

RESUMEN

A series of new tetrahydroacridine and 3,5-dichlorobenzoic acid hybrids with different spacers were designed, synthesized, and evaluated for their ability to inhibit both cholinesterase enzymes. Compounds 3a, 3b, 3f, and 3g exhibited selective butyrylcholinesterase (EqBuChE) inhibition with IC50 values ranging from 24 to 607 nM. Among them, compound 3b was the most active (IC50 = 24 nM). Additionally, 3c (IC50 for EeAChE = 25 nM and IC50 for EqBuChE = 123 nM) displayed dual cholinesterase inhibitory activity and was the most active compound against acetylcholinesterase (AChE). Active compound 3c was also tested for the ability to inhibit Aß aggregation. Theoretical physicochemical properties of the compounds were calculated using ACD Labs Percepta and Chemaxon. A Lineweaver-Burk plot and docking study showed that 3c targeted both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. Moreover, 3c appears to possess neuroprotective activity and could be considered a free-radical scavenger. In addition, 3c did not cause DNA damage and was found to be less toxic than tacrine after oral administration; it also demonstrated little inhibitory activity towards hyaluronidase (HYAL), which may indicate that it possesses anti-inflammatory properties. The screening for new in vivo interactions between 3c and known receptors was realized by yeast three-hybrid technology (Y3H).


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Clorobenzoatos/química , Inhibidores de la Colinesterasa/síntesis química , Fármacos Neuroprotectores/síntesis química , Tacrina/análogos & derivados , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Dominio Catalítico , Línea Celular Tumoral , Células Cultivadas , Inhibidores de la Colinesterasa/efectos adversos , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Colinesterasas/química , Colinesterasas/metabolismo , Depuradores de Radicales Libres/efectos adversos , Depuradores de Radicales Libres/síntesis química , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/uso terapéutico , Humanos , Hialuronoglucosaminidasa/antagonistas & inhibidores , Ratones , Simulación del Acoplamiento Molecular , Fármacos Neuroprotectores/efectos adversos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Unión Proteica , Multimerización de Proteína/efectos de los fármacos
13.
Eur J Med Chem ; 187: 111916, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31812794

RESUMEN

Complex pathomechanism of Alzheimer's disease (AD) prompts researchers to develop multifunctional molecules in order to find effective therapy against AD. We designed and synthesized novel multifunctional ligands for which we assessed their activities towards butyrylcholinesterase, beta secretase, amyloid beta (Aß) and tau protein aggregation as well as antioxidant and metal-chelating properties. All compounds showed dual anti-aggregating properties towards Aß and tau protein in the in cellulo assay in Escherichia coli. Of particular interest are compounds 24b and 25b, which efficiently inhibit aggregation of Aß and tau protein at 10 µM (24b: 45% for Aß, 53% for tau; 25b: 49% for Aß, 54% for tau). They display free radical scavenging capacity and antioxidant activity in ABTS and FRAP assays, respectively, and selectively chelate copper ions. Compounds 24b and 25b are also the most potent inhibitors of BuChE with IC50 of 2.39 µM and 1.94 µM, respectively. Promising in vitro activities of the presented multifunctional ligands as well as their original scaffold are a very interesting starting point for further research towards effective anti-AD treatment.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/antagonistas & inhibidores , Antioxidantes/farmacología , Butirilcolinesterasa/metabolismo , Quelantes/farmacología , Inhibidores de la Colinesterasa/farmacología , Pirrolidinas/farmacología , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Antioxidantes/síntesis química , Antioxidantes/química , Benzotiazoles/antagonistas & inhibidores , Quelantes/síntesis química , Quelantes/química , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Electrophorus , Recuperación de Fluorescencia tras Fotoblanqueo , Caballos , Humanos , Estructura Molecular , Agregado de Proteínas/efectos de los fármacos , Pirrolidinas/síntesis química , Pirrolidinas/química , Relación Estructura-Actividad , Ácidos Sulfónicos/antagonistas & inhibidores
14.
Bioorg Chem ; 90: 103084, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31271942

RESUMEN

In the search for new treatments for complex disorders such as Alzheimer's disease the Multi-Target-Directed Ligands represent a very promising approach. The aim of the present study was to identify multifunctional compounds among several series of non-imidazole histamine H3 receptor ligands, derivatives of 1-[2-thiazol-5-yl-(2-aminoethyl)]-4-n-propylpiperazine, 1-[2-thiazol-4-yl-(2-aminoethyl)]-4-n-propylpiperazine and 1-phenoxyalkyl-4-(amino)alkylopiperazine using in vitro and in vivo pharmacological evaluation and computational studies. Performed in vitro assays showed moderate potency of tested compounds against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Molecular modeling studies have revealed possible interactions between the active compounds and both AChE and BuChE as well as the human H3 histamine receptor. Computational studies showed the high drug-likeness of selected compounds with very good physicochemical profiles. The parallel artificial membrane permeation assay proved outstanding blood-brain barrier penetration in test conditions. The most promising compound, A12, chemically methyl(4-phenylbutyl){2-[2-(4-propylpiperazin-1-yl)-1,3-thiazol-5-yl]ethyl}amine, possesses good balanced multifunctional profile with potency toward studied targets - H3 antagonist activity (pA2 = 8.27), inhibitory activity against both AChE (IC50 = 13.96 µM), and BuChE (IC50 = 14.62 µM). The in vivo pharmacological studies revealed the anti-amnestic properties of compound A12 in the passive avoidance test on mice.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Amnesia/tratamiento farmacológico , Inhibidores de la Colinesterasa/farmacología , Modelos Animales de Enfermedad , Piperazinas/química , Receptores Histamínicos H3/metabolismo , Acetilcolinesterasa/química , Adyuvantes Anestésicos/toxicidad , Amnesia/inducido químicamente , Animales , Butirilcolinesterasa/química , Inhibidores de la Colinesterasa/química , Biología Computacional , Técnicas In Vitro , Ligandos , Masculino , Ratones , Modelos Moleculares , Estructura Molecular , Receptores Histamínicos H3/química , Escopolamina/toxicidad , Relación Estructura-Actividad
15.
Int J Mol Sci ; 20(3)2019 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-30678364

RESUMEN

Here we report the two-step synthesis of 8 new cyclopentaquinoline derivatives as modifications of the tetrahydroacridine structure. Next, the biological assessment of each of them was performed. Based on the obtained results we identified 6-chloro-N-[2-(2,3-dihydro-1H-cyclopenta[b]quinolin-9-ylamino)-hexyl]]-nicotinamide hydrochloride (3e) as the most promising compound with inhibitory potencies against EeAChE and EqBuChE in the low nanomolar level 67 and 153 nM, respectively. Moreover, 3e compound is non-hepatotoxic, able to inhibit amyloid beta aggregation, and shows a mix-type of cholinesterase's inhibition. The mixed type of inhibition of the compound was confirmed by molecular modeling. Then, yeast three-hybrid (Y3H) technology was used to confirm the known ligand-receptor interactions. New derivatives do not show antioxidant activity (confirmed by the use of two different tests). A pKa assay method was developed to identify the basic physicochemical properties of 3e compound. A LogP assay confirmed that 3e compound fulfills Lipinsky's rule of five.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Inhibidores de la Colinesterasa/síntesis química , Fármacos Neuroprotectores/síntesis química , Quinolinas/química , Péptidos beta-Amiloides/metabolismo , Línea Celular , Línea Celular Tumoral , Inhibidores de la Colinesterasa/farmacología , Humanos , Simulación del Acoplamiento Molecular , Fármacos Neuroprotectores/farmacología , Unión Proteica
16.
Chem Biol Drug Des ; 93(4): 511-521, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30422400

RESUMEN

A series of 2-pyrimidinyl-piperazinyl-alkyl derivatives of 1H-imidazo[2,1-f]purine-2,4(3H,8H)-dione has been synthesized in an attempt to discover a new class of psychotropic agents. Compounds were evaluated for their in vitro affinity for serotonin 5-HT1A , 5-HT7 , and phosphodiesterases PDE4 and PDE10. The most potent compound 2-pyrimidinyl-1-piperazinyl-butyl-imidazo[2,1-f]purine-2,4-dione (4b) behaved as strong and selective antagonist of 5-HT1A . Molecular modeling studies revealed differences in binding mode between compound 4b and buspirone, which might reflect variation of the ligands' affinity and potency in the 5-HT1A receptor. Compound 4b in silico models demonstrated drug-likeness properties and, contrary to buspirone, showed a metabolic stability in mouse liver microsomes system. Experimentally obtained value of apparent permeability coefficient Papp for 4b in parallel artificial permeability assay indicates the possibility of binding weakly to plasma proteins and high intestinal absorption fraction. Evaluation of the antidepressant- and anxiolytic-like activities of 4b revealed both activities at the same dose of 1.25 mg/kg and seemed to be specific. The antidepressant and/or anxiolytic properties of 4b may be related to its first-pass effect.


Asunto(s)
Ansiolíticos/química , Antidepresivos/química , Purinas/química , Receptor de Serotonina 5-HT1A/química , Animales , Ansiolíticos/metabolismo , Ansiolíticos/farmacología , Antidepresivos/metabolismo , Antidepresivos/farmacología , Sitios de Unión , Imidazoles/química , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Simulación de Dinámica Molecular , Permeabilidad/efectos de los fármacos , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/metabolismo , Piperazina/química , Unión Proteica , Estructura Terciaria de Proteína , Purinas/metabolismo , Purinas/farmacología , Pirimidinas/química , Receptor de Serotonina 5-HT1A/metabolismo , Relación Estructura-Actividad
17.
Bioorg Chem ; 78: 29-38, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29529519

RESUMEN

Selective butyrylcholinesterase inhibitors could be the promising drug candidates, used in treatment of Alzheimer's disease. The study describes the synthesis and biological activity of novel carbamate derivatives with N-phenylpiperazine, N-benzylpiperazine and 4-benzylpiperidine moieties. Biological studies revealed that most of these compounds displayed significant activity against BuChE. Compound 16 (3-(4-phenyl-piperazin-1-ylmethyl)-phenyl phenylcarbamate) turned out to be the most active (IC50 = 2.00 µM for BuChE). For all synthesized compounds lipophilicity and other physicochemical properties were calculated using computer programs. Relationship between these properties and activity was also checked. Binding mode with enzyme and the ensuing differences in activity were explained by the molecular modeling studies.


Asunto(s)
Acetilcolinesterasa/metabolismo , Butirilcolinesterasa/metabolismo , Carbamatos/farmacología , Inhibidores de la Colinesterasa/farmacología , Animales , Carbamatos/síntesis química , Carbamatos/química , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Electrophorus , Caballos , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
18.
Molecules ; 23(2)2018 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-29414887

RESUMEN

The complex nature of Alzheimer's disease calls for multidirectional treatment. Consequently, the search for multi-target-directed ligands may lead to potential drug candidates. The aim of the present study is to seek multifunctional compounds with expected activity against disease-modifying and symptomatic targets. A series of 15 drug-like various substituted derivatives of 2-(benzylamino-2-hydroxyalkyl)isoindoline-1,3-diones was designed by modification of cholinesterase inhibitors toward ß-secretase inhibition. All target compounds have been synthesized and tested against eel acetylcholinesterase (eeAChE), equine serum butyrylcholinesterase (eqBuChE), human ß-secretase (hBACE-1), and ß-amyloid (Aß-aggregation). The most promising compound, 12 (2-(5-(benzylamino)-4-hydroxypentyl)isoindoline-1,3-dione), displayed inhibitory potency against eeAChE (IC50 = 3.33 µM), hBACE-1 (43.7% at 50 µM), and Aß-aggregation (24.9% at 10 µM). Molecular modeling studies have revealed possible interaction of compound 12 with the active sites of both enzymes-acetylcholinesterase and ß-secretase. IN CONCLUSION: modifications of acetylcholinesterase inhibitors led to the discovery of a multipotent anti-Alzheimer's agent, with moderate and balanced potency, capable of inhibiting acetylcholinesterase, a symptomatic target, and disease-modifying targets: ß-secretase and Aß-aggregation.


Asunto(s)
Diseño de Fármacos , Isoindoles/química , Isoindoles/farmacología , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/química , Butirilcolinesterasa/química , Técnicas de Química Sintética , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Relación Dosis-Respuesta a Droga , Enlace de Hidrógeno , Concentración 50 Inhibidora , Isoindoles/síntesis química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Relación Estructura-Actividad
19.
Eur J Med Chem ; 145: 760-769, 2018 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-29353726

RESUMEN

A novel series of 9-amino-1,2,3,4-tetrahydroacridine and 5,6-dichloronicotinic acid moiety were conjugated with different linkers. Afterwards new derivatives were evaluated as potential multifunctional acetylcholinesterase inhibitors (AChEIs), anti-Alzheimer's disease (AD) drug candidates. All the compounds were synthesized and tested for capacity for the inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes. Specifically, the most promising derivative 3b (IC50 = 1.02 nM) had higher inhibitory potency compared to the reference drug, tacrine. Consequently, kinetic studies of 3b compound showed a mixed-type inhibition of both AChE and BuChE. Afterwards the best potent AChE inhibitor has been examined on amyloid ß (Aß) self-induced aggregation. Furthermore, 3b compound was tested in various concentrations and had moderate activity against Aß aggregation. Inhibition of Aß aggregation was 46.63% and 19.41% at 50 µM and 5  µM concentrations, respectively. Moreover, no cytotoxicity was observed for the mentioned concentrations. Therefore, 3b compound is a promising multipotent agent for the treatment of AD.


Asunto(s)
Acetilcolinesterasa/metabolismo , Acridinas/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Ácidos Nicotínicos/farmacología , Acridinas/química , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/metabolismo , Animales , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Electrophorus , Caballos , Humanos , Modelos Moleculares , Estructura Molecular , Ácidos Nicotínicos/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
20.
ACS Chem Neurosci ; 9(5): 1074-1094, 2018 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-29345897

RESUMEN

The multitarget approach is a promising paradigm in drug discovery, potentially leading to new treatment options for complex disorders, such as Alzheimer's disease. Herein, we present the discovery of a unique series of 1-benzylamino-2-hydroxyalkyl derivatives combining inhibitory activity against butyrylcholinesterase, ß-secretase, ß-amyloid, and tau protein aggregation, all related to mechanisms which underpin Alzheimer's disease. Notably, diphenylpropylamine derivative 10 showed balanced activity against both disease-modifying targets, inhibition of ß-secretase (IC50  hBACE-1 = 41.60 µM), inhibition of amyloid ß aggregation (IC50 Aß = 3.09 µM), inhibition of tau aggregation (55% at 10 µM); as well as against symptomatic targets, butyrylcholinesterase inhibition (IC50  hBuChE = 7.22 µM). It might represent an encouraging starting point for development of multifunctional disease-modifying anti-Alzheimer's agents.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Butirilcolinesterasa/farmacología , Inhibidores de la Colinesterasa/farmacología , Diseño de Fármacos , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/efectos de los fármacos , Péptidos beta-Amiloides/metabolismo , Humanos , Simulación del Acoplamiento Molecular/métodos , Fragmentos de Péptidos/metabolismo , Relación Estructura-Actividad , Proteínas tau/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...