Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(9): e0272916, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36103462

RESUMEN

We recently published a preliminary assessment of the activity of a poly (ADP-ribose) polymerase (PARP) inhibitor, stenoparib, also known as 2X-121, which inhibits viral replication by affecting pathways of the host. Here we show that stenoparib effectively inhibits a SARS-CoV-2 wild type (BavPat1/2020) strain and four additional variant strains; alpha (B.1.1.7), beta (B.1.351), delta (B.1.617.2) and gamma (P.1) in vitro, with 50% effective concentration (EC50) estimates of 4.1 µM, 8.5 µM, 24.1 µM, 8.2 µM and 13.6 µM, respectively. A separate experiment focusing on a combination of 10 µM stenoparib and 0.5 µM remdesivir, an antiviral drug, resulted in over 80% inhibition of the alpha variant, which is substantially greater than the effect achieved with either drug alone, suggesting at least additive effects from combining the different mechanisms of activity of stenoparib and remdesivir.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Poli(ADP-Ribosa) Polimerasas , Adenosina Difosfato , Humanos , Poli(ADP-Ribosa) Polimerasas/metabolismo , Ribosa , SARS-CoV-2
2.
mBio ; 12(1)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33468703

RESUMEN

By late 2020, the coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), had caused tens of millions of infections and over 1 million deaths worldwide. A protective vaccine and more effective therapeutics are urgently needed. We evaluated a new poly(ADP-ribose) polymerase (PARP) inhibitor, stenoparib, that recently advanced to phase II clinical trials for treatment of ovarian cancer, for activity against human respiratory coronaviruses, including SARS-CoV-2, in vitro Stenoparib exhibits dose-dependent suppression of SARS-CoV-2 multiplication and spread in Vero E6 monkey kidney and Calu-3 human lung adenocarcinoma cells. Stenoparib was also strongly inhibitory to the human seasonal respiratory coronavirus HCoV-NL63. Compared to remdesivir, which inhibits viral replication downstream of cell entry, stenoparib impedes entry and postentry processes, as determined by time-of-addition (TOA) experiments. Moreover, a 10 µM dosage of stenoparib-below the approximated 25.5 µM half-maximally effective concentration (EC50)-combined with 0.5 µM remdesivir suppressed coronavirus growth by more than 90%, indicating a potentially synergistic effect for this drug combination. Stenoparib as a stand-alone or as part of combinatorial therapy with remdesivir should be a valuable addition to the arsenal against COVID-19.IMPORTANCE New therapeutics are urgently needed in the fight against COVID-19. Repurposing drugs that are either already approved for human use or are in advanced stages of the approval process can facilitate more rapid advances toward this goal. The PARP inhibitor stenoparib may be such a drug, as it is currently in phase II clinical trials for the treatment of ovarian cancer and its safety and dosage in humans have already been established. Our results indicate that stenoparib possesses strong antiviral activity against SARS-CoV-2 and other coronaviruses in vitro. This activity appears to be based on multiple modes of action, where both pre-entry and postentry viral replication processes are impeded. This may provide a therapeutic advantage over many current options that have a narrower target range. Moreover, our results suggest that stenoparib and remdesivir in combination may be especially potent against coronavirus infection.


Asunto(s)
Antivirales/farmacología , COVID-19/virología , Coronavirus Humano NL63/efectos de los fármacos , Isoquinolinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Quinazolinonas/farmacología , SARS-CoV-2/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Animales , Antimetabolitos/farmacología , Compuestos Azo , Chlorocebus aethiops , Coronavirus Humano NL63/enzimología , Reposicionamiento de Medicamentos , Humanos , SARS-CoV-2/enzimología , Células Vero , Tratamiento Farmacológico de COVID-19
3.
Adv Radiat Oncol ; 5(3): 490-494, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32529145

RESUMEN

The Centers for Medicare and Medicaid Services has proposed alternate payment models to improve the efficiency and decrease the redundancy of health care. Bundled payments or episode-based care is one example. Herein, we report on the successful implementation of a quality improvement project in which changing the clinical workflow for postoperative radiation treatment to the hip to prevent heterotopic ossification improved the efficiency of patient care and decreased cost by eliminating redundant imaging through multidisciplinary participation. This project is a model for interdisciplinary collaboration to improve patient care and reduce unnecessary health care spending in the era of bundled payment/episodes of care program implementation.

4.
FEMS Microbiol Ecol ; 96(3)2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31960901

RESUMEN

Root endophytes are a promising tool for increasing plant growth, but it is unclear whether they perform consistently across plant hosts. We characterized the blue grama (Bouteloua gracilis) root microbiome using two sequencing methods, quantified the effects of root endophytes in the original host (blue grama) and an agricultural recipient, corn (Zea mays), under drought and well-watered conditions and examined in vitro mechanisms for plant growth promotion. 16S rRNA amplicon sequencing revealed that the blue grama root microbiome was similar across an elevation gradient, with the exception of four genera. Culturing and Sanger sequencing revealed eight unique endophytes belonging to the genera Bacillus, Lysinibacillus and Pseudomonas. All eight endophytes colonized corn roots, but had opposing effects on aboveground and belowground biomass in each plant species: they increased blue grama shoot mass by 45% (19) (mean +/- SE) while decreasing corn shoot mass by 10% (19), and increased corn root:shoot by 44% (7), while decreasing blue grama root:shoot by 17% (7). Furthermore, contrary to our expectations, endophytes had stronger effects on plant growth under well-watered conditions rather than drought conditions. Collectively, these results suggest that ecological features, including host identity, bacterial traits, climate conditions and morphological outcomes, should be carefully considered in the design and implementation of agricultural inocula.


Asunto(s)
Endófitos , Raíces de Plantas , Biomasa , Endófitos/genética , ARN Ribosómico 16S/genética , Asignación de Recursos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA