Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Lipid Res ; 63(5): 100198, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35307397

RESUMEN

Triglycerides (TG) are required for fatty acid transport and storage and are essential for human health. Angiopoietin-like-protein 8 (ANGPTL8) has previously been shown to form a complex with ANGPTL3 that increases circulating TG by potently inhibiting LPL. We also recently showed that the TG-lowering apolipoprotein A5 (ApoA5) decreases TG levels by suppressing ANGPTL3/8-mediated LPL inhibition. To understand how LPL binds ANGPTL3/8 and ApoA5 blocks this interaction, we used hydrogen-deuterium exchange mass-spectrometry and molecular modeling to map binding sites of LPL and ApoA5 on ANGPTL3/8. Remarkably, we found that LPL and ApoA5 both bound a unique ANGPTL3/8 epitope consisting of N-terminal regions of ANGPTL3 and ANGPTL8 that are unmasked upon formation of the ANGPTL3/8 complex. We further used ANGPTL3/8 as an immunogen to develop an antibody targeting this same epitope. After refocusing on antibodies that bound ANGPTL3/8, as opposed to ANGPTL3 or ANGPTL8 alone, we utilized bio-layer interferometry to select an antibody exhibiting high-affinity binding to the desired epitope. We revealed an ANGPTL3/8 leucine zipper-like motif within the anti-ANGPTL3/8 epitope, the LPL-inhibitory region, and the ApoA5-interacting region, suggesting the mechanism by which ApoA5 lowers TG is via competition with LPL for the same ANGPTL3/8-binding site. Supporting this hypothesis, we demonstrate that the anti-ANGPTL3/8 antibody potently blocked ANGPTL3/8-mediated LPL inhibition in vitro and dramatically lowered TG levels in vivo. Together, these data show that an anti-ANGPTL3/8 antibody targeting the same leucine zipper-containing epitope recognized by LPL and ApoA5 markedly decreases TG by suppressing ANGPTL3/8-mediated LPL inhibition.


Asunto(s)
Lipoproteína Lipasa , Hormonas Peptídicas , Proteína 3 Similar a la Angiopoyetina , Proteína 8 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina/metabolismo , Apolipoproteína A-V , Epítopos , Humanos , Leucina Zippers , Lipoproteína Lipasa/metabolismo , Hormonas Peptídicas/metabolismo , Triglicéridos/metabolismo
2.
MAbs ; 13(1): 2000348, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34781834

RESUMEN

Advances in antibody discovery technologies, especially with the availability of humanized mice and phage/yeast library approaches, enable the generation of a large diversity of antibodies against nearly any target of interest. As a result, there is an increasing demand for the production of larger numbers of purified antibodies at quantities (10s-100s of milligrams) sufficient for functional screening assays, drug-ability/develop-ability studies and immunogenicity assessments. To accommodate this need, new methods are required that bridge miniature high throughput/plate-based purification and conventional, one at a time, two-step purification at much larger scales. Thus, we developed a semi-automated, mid-scale (i.e., 1-75 mg) purification process that uses a combination of parallel affinity capture and automated sequential polishing to provide substantially improved throughput while delivering high purity. We optimized the affinity capture step to perform 24 monoclonal antibody purifications in parallel using a Protein Maker for 20-200 mL culture media. The eluant is transferred directly to an AKTA pure system equipped with an autosampler for sequential preparative size exclusion chromatography to remove aggregates and undesirable impurities, as well as exchange the antibody into a buffer suitable for most uses, including cell-based assays. This two-step purification procedure, together with plate-based protein analytical methods, can purify 24-48 monoclonal antibodies in <20 hours and generate up to 80 mg per sample. A stringent clean-in-place protocol for both systems and column maintenance was designed and established to minimize endotoxin contamination. This process has proven to be very reliable and robust, enabling the production of thousands of antibodies of sufficient quality and quantity that are suitable for cell-based assays, biochemical/biophysical characterization, and in vivo animal models.


Asunto(s)
Anticuerpos Monoclonales , Proteína Estafilocócica A , Animales , Anticuerpos Monoclonales/química , Cromatografía de Afinidad/métodos , Cromatografía en Gel , Ratones , Proteína Estafilocócica A/química
3.
Sci Transl Med ; 13(593)2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33820835

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) poses a public health threat for which preventive and therapeutic agents are urgently needed. Neutralizing antibodies are a key class of therapeutics that may bridge widespread vaccination campaigns and offer a treatment solution in populations less responsive to vaccination. Here, we report that high-throughput microfluidic screening of antigen-specific B cells led to the identification of LY-CoV555 (also known as bamlanivimab), a potent anti-spike neutralizing antibody from a hospitalized, convalescent patient with coronavirus disease 2019 (COVID-19). Biochemical, structural, and functional characterization of LY-CoV555 revealed high-affinity binding to the receptor-binding domain, angiotensin-converting enzyme 2 binding inhibition, and potent neutralizing activity. A pharmacokinetic study of LY-CoV555 conducted in cynomolgus monkeys demonstrated a mean half-life of 13 days and a clearance of 0.22 ml hour-1 kg-1, consistent with a typical human therapeutic antibody. In a rhesus macaque challenge model, prophylactic doses as low as 2.5 mg/kg reduced viral replication in the upper and lower respiratory tract in samples collected through study day 6 after viral inoculation. This antibody has entered clinical testing and is being evaluated across a spectrum of COVID-19 indications, including prevention and treatment.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales/inmunología , COVID-19 , Animales , Anticuerpos Neutralizantes/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Macaca mulatta , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/inmunología
4.
bioRxiv ; 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33024963

RESUMEN

SARS-CoV-2 poses a public health threat for which therapeutic agents are urgently needed. Herein, we report that high-throughput microfluidic screening of antigen-specific B-cells led to the identification of LY-CoV555, a potent anti-spike neutralizing antibody from a convalescent COVID-19 patient. Biochemical, structural, and functional characterization revealed high-affinity binding to the receptor-binding domain, ACE2 binding inhibition, and potent neutralizing activity. In a rhesus macaque challenge model, prophylaxis doses as low as 2.5 mg/kg reduced viral replication in the upper and lower respiratory tract. These data demonstrate that high-throughput screening can lead to the identification of a potent antiviral antibody that protects against SARS-CoV-2 infection. ONE SENTENCE SUMMARY: LY-CoV555, an anti-spike antibody derived from a convalescent COVID-19 patient, potently neutralizes SARS-CoV-2 and protects the upper and lower airways of non-human primates against SARS-CoV-2 infection.

5.
MAbs ; 11(4): 747-756, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30913963

RESUMEN

Poor solubility is a common challenge encountered during the development of high concentration monoclonal antibody (mAb) formulations, but there are currently no methods that can provide predictive information on high-concentration behavior of mAbs in early discovery. We explored the utility of methodologies used for determining extrapolated solubility as a way to rank-order mAbs based on their relative solubility properties. We devised two approaches to accomplish this: 1) vapor diffusion technique utilized in traditional protein crystallization practice, and 2) polyethylene glycol (PEG)-induced precipitation and quantitation by turbidity. Using a variety of in-house mAbs with known high-concentration behavior, we demonstrated that both approaches exhibited reliable predictability of the relative solubility properties of these mAbs. Optimizing the latter approach, we developed a format that is capable of screening a large panel of mAbs in multiple pH and buffer conditions. This simple, material-saving, high-throughput approach enables the selection of superior molecules and optimal formulation conditions much earlier in the antibody discovery process, prior to time-consuming and material intensive high-concentration studies.


Asunto(s)
Anticuerpos Monoclonales/química , Ensayos Analíticos de Alto Rendimiento/métodos , Cristalización , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Polietilenglicoles/química , Solubilidad
6.
Mol Cancer Ther ; 14(7): 1661-70, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25908685

RESUMEN

Skeletal muscle wasting occurs in a great majority of cancer patients with advanced disease and is associated with a poor prognosis and decreased survival. Myostatin functions as a negative regulator of skeletal muscle mass and has recently become a therapeutic target for reducing the loss of skeletal muscle and strength associated with clinical myopathies. We generated neutralizing antibodies to myostatin to test their potential use as therapeutic agents to attenuate the skeletal muscle wasting due to cancer. We show that our neutralizing antimyostatin antibodies significantly increase body weight, skeletal muscle mass, and strength in non-tumor-bearing mice with a concomitant increase in mean myofiber area. The administration of these neutralizing antibodies in two preclinical models of cancer-induced muscle wasting (C26 colon adenocarcinoma and PC3 prostate carcinoma) resulted in a significant attenuation of the loss of muscle mass and strength with no effect on tumor growth. We also show that the skeletal muscle mass- and strength-preserving effect of the antibodies is not affected by the coadministration of gemcitabine, a common chemotherapeutic agent, in both non-tumor-bearing mice and mice bearing C26 tumors. In addition, we show that myostatin neutralization with these antibodies results in the preservation of skeletal muscle mass following reduced caloric intake, a common comorbidity associated with advanced cancer. Our findings support the use of neutralizing antimyostatin antibodies as potential therapeutics for cancer-induced muscle wasting.


Asunto(s)
Anticuerpos Neutralizantes/farmacología , Músculo Esquelético/efectos de los fármacos , Miostatina/inmunología , Neoplasias/tratamiento farmacológico , Síndrome Debilitante/tratamiento farmacológico , Animales , Anticuerpos Neutralizantes/inmunología , Afinidad de Anticuerpos/inmunología , Peso Corporal/efectos de los fármacos , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Femenino , Células HEK293 , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones SCID , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Miofibrillas/efectos de los fármacos , Neoplasias/complicaciones , Neoplasias Experimentales/complicaciones , Neoplasias Experimentales/tratamiento farmacológico , Trasplante Heterólogo , Resultado del Tratamiento , Síndrome Debilitante/etiología
7.
J Pharmacol Exp Ther ; 344(3): 616-23, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23249626

RESUMEN

Human follistatin is a regulatory glycoprotein with widespread biologic functions, including antiinflammatory activities, wound-healing properties, and muscle-stimulating effects. The role of follistatin in a wide range of biologic activities shows promise for potential clinical application, which has prompted considerable interest in the investigation of the protein as a potential disease-modifying agent. In spite of this potential, the development of follistatin as a broad use biotherapeutic has been severely hindered by a poor understanding and characterization of its pharmacokinetic/pharmacodynamic (PK/PD) relationships. Therefore, to better define these relationships, we performed in-depth analyses of the PK/PD relationships of native follistatin-315 (FST315). Our data indicate that the intrinsic PK/PD properties of native FST315 are poorly suited for acting as a parentally administered biotherapeutic with broad systemic effects. Here, we leveraged protein engineering to modify the PK characteristics of the native molecule by fusing FST315 to a murine IgG(1) Fc and removing the intrinsic heparan sulfate-binding activity of follistatin. The engineered variant molecule had ~100- and ~1600-fold improvements in terminal half-life and exposure, respectively. In contrast to the native FST315, the variant showed a robust, dose-dependent pharmacological effect when administered subcutaneously on a weekly basis in mouse models of muscle atrophy and degeneration. These studies highlight the underappreciated and critical relationship between optimizing multiple physical and chemical properties of follistatin on its overall PK/PD profile. Moreover, our findings provide the first documented strategy toward the development of a follistatin therapeutic with potential use in patients affected with skeletal muscle diseases.


Asunto(s)
Folistatina/farmacología , Folistatina/farmacocinética , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/farmacocinética , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Folistatina/genética , Células HEK293 , Semivida , Heparina/metabolismo , Humanos , Inmunoglobulina G/metabolismo , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/metabolismo , Unión Proteica , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/genética , Sefarosa/metabolismo
8.
J Am Soc Nephrol ; 20(3): 524-34, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19176699

RESUMEN

Altered coagulation and inflammation contribute to the pathogenesis of ischemic renal injury. Thrombomodulin is a necessary factor in the anticoagulant protein C pathway and has inherent anti-inflammatory properties. We studied the effect of soluble thrombomodulin (sTM) in a hypoperfusion model of ischemic kidney injury. To markedly reduce infrarenal aortic blood flow and femoral arterial pressures, we clamped the suprarenal aorta of rats, occluding them 90%, for 60 min. Reversible acute kidney injury (AKI) occurred at 24 h in rats subjected to hypoperfusion. Histologic analysis at 24 h revealed acute tubular necrosis (ATN), and intravital two-photon microscopy showed flow abnormalities in the microvasculature and defects of endothelial permeability. Pretreatment with rat sTM markedly reduced both I-R-induced renal dysfunction and tubular histologic injury scores. sTM also significantly improved microvascular erythrocyte flow rates, reduced microvascular endothelial leukocyte rolling and attachment, and minimized endothelial permeability to infused fluorescence dextrans, assessed by intravital quantitative multiphoton microscopy. Furthermore, sTM administered 2 h after reperfusion protected against ischemia-induced renal dysfunction at 24 h and improved survival. By using an sTM variant, we also determined that the protective effects of sTM were independent of its ability to generate activated protein C. These data suggest that sTM may have therapeutic potential for ischemic AKI.


Asunto(s)
Isquemia/prevención & control , Riñón/irrigación sanguínea , Riñón/efectos de los fármacos , Trombomodulina/administración & dosificación , Animales , Secuencia de Bases , Permeabilidad Capilar/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Cartilla de ADN/genética , Fibrinolíticos/administración & dosificación , Variación Genética , Riñón/lesiones , Necrosis Tubular Aguda/patología , Necrosis Tubular Aguda/fisiopatología , Necrosis Tubular Aguda/prevención & control , Leucocitos/efectos de los fármacos , Leucocitos/fisiología , Masculino , Proteína C/metabolismo , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/genética , Circulación Renal/efectos de los fármacos , Solubilidad , Trombomodulina/genética , Trombomodulina/fisiología
9.
J Am Soc Nephrol ; 20(2): 267-77, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19092124

RESUMEN

Administration of activated protein C (APC) protects from renal dysfunction, but the underlying mechanism is unknown. APC exerts both antithrombotic and cytoprotective properties, the latter via modulation of protease-activated receptor-1 (PAR-1) signaling. We generated APC variants to study the relative importance of the two functions of APC in a model of LPS-induced renal microvascular dysfunction. Compared with wild-type APC, the K193E variant exhibited impaired anticoagulant activity but retained the ability to mediate PAR-1-dependent signaling. In contrast, the L8W variant retained anticoagulant activity but lost its ability to modulate PAR-1. By administering wild-type APC or these mutants in a rat model of LPS-induced injury, we found that the PAR-1 agonism, but not the anticoagulant function of APC, reversed LPS-induced systemic hypotension. In contrast, both functions of APC played a role in reversing LPS-induced decreases in renal blood flow and volume, although the effects on PAR-1-dependent signaling were more potent. Regarding potential mechanisms for these findings, APC-mediated PAR-1 agonism suppressed LPS-induced increases in the vasoactive peptide adrenomedullin and infiltration of iNOS-positive leukocytes into renal tissue. However, the anticoagulant function of APC was responsible for suppressing LPS-induced stimulation of the proinflammatory mediators ACE-1, IL-6, and IL-18, perhaps accounting for its ability to modulate renal hemodynamics. Both variants reduced active caspase-3 and abrogated LPS-induced renal dysfunction and pathology. We conclude that although PAR-1 agonism is solely responsible for APC-mediated improvement in systemic hemodynamics, both functions of APC play distinct roles in attenuating the response to injury in the kidney.


Asunto(s)
Enfermedades Renales/metabolismo , Riñón/lesiones , Proteína C/fisiología , Animales , Humanos , Inflamación , Interleucina-18/metabolismo , Interleucina-6/metabolismo , Riñón/metabolismo , Lipopolisacáridos/metabolismo , Masculino , Microcirculación , Proteína C/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor PAR-1/metabolismo , Transducción de Señal
10.
J Am Chem Soc ; 125(36): 10941-6, 2003 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-12952475

RESUMEN

The crucial step in drug discovery is the identification of a lead compound from a vast chemical library by any number of screening techniques. NMR-based screening has the advantage of directly detecting binding of a compound to the target. The spectra resulting from these screens can also be very complex and difficult to analyze, making this an inefficient process. We present here a method, RAMPED-UP NMR, (Rapid Analysis and Multiplexing of Experimentally Discriminated Uniquely Labeled Proteins using NMR) which generates simple spectra which are easy to interpret and allows several proteins to be screened simultaneously. In this method, the proteins to be screened are uniquely labeled with one amino acid type. There are several benefits derived from this unique labeling strategy: the spectra are greatly simplified, resonances that are most likely to be affected by binding are the only ones observed, and peaks that yield little or no information upon binding are eliminated, allowing the analysis of multiple proteins easily and simultaneously. We demonstrate the ability of three different proteins to be analyzed simultaneously for binding to two different ligands. This method will have significant impact in the use of NMR spectroscopy for both the lead generation and lead optimization phases of drug discovery by its ability to increase screening throughput and the ability to examine selectivity. To the best of our knowledge, this is the first time in any format that multiple proteins can be screened in one tube.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/análisis , Técnicas Químicas Combinatorias/métodos , Proteínas/química
11.
Proc Natl Acad Sci U S A ; 100(8): 4423-8, 2003 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-12671072

RESUMEN

Human activated protein C (APC) is an antithrombotic, antiinflammatory serine protease that plays a central role in vascular homeostasis, and activated recombinant protein C, drotrecogin alfa (activated), has been shown to reduce mortality in patients with severe sepsis. Similar to other serine proteases, functional APC levels are regulated by the serine protease inhibitor family of proteins including alpha(1)-antitrypsin and protein C inhibitor. Using APC-substrate modeling, we designed and produced a number of derivatives with the goal of altering the proteolytic specificity of APC such that the variants exhibited resistance to inactivation by protein C inhibitor and alpha(1)-antitrypsin yet maintained their primary anticoagulant activity. Substitutions at Leu-194 were of particular interest, because they exhibited 4- to 6-fold reductions in the rate of inactivation in human plasma and substantially increased pharmacokinetic profiles compared with wild-type APC. This was achieved with minimal impairment of the anticoagulant/antithrombotic activity of APC. These data demonstrate the ability to selectively modulate substrate specificity and subsequently affect in vivo performance and suggest therapeutic opportunities for the use of protein C derivatives in disease states with elevated serine protease inhibitor levels.


Asunto(s)
Proteína C/química , Proteína C/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Anticoagulantes/química , Anticoagulantes/metabolismo , Anticoagulantes/farmacología , Variación Genética , Humanos , Técnicas In Vitro , Cinética , Macaca fascicularis , Modelos Moleculares , Proteína C/genética , Proteína C/farmacología , Inhibidor de Proteína C/farmacología , Ingeniería de Proteínas , Conejos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Serpinas/farmacología , Especificidad por Sustrato , alfa 1-Antitripsina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...