Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int Arch Occup Environ Health ; 97(3): 303-311, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38351350

RESUMEN

PURPOSE: Several epidemiological studies have linked lead (Pb) exposure to induced oxidative stress and the promotion of inflammatory response. We performed a within-subjects study (repeated measures study) to evaluate the relationship between the concentration of blood lead (B-Pb) and toenail lead (T-Pb) and circulating markers of inflammation. METHODS: We evaluated the associations between B-Pb concentrations and T-Pb concentrations and circulating markers of inflammation, soluble intracellular adhesion molecule-1 (s-ICAM-1), soluble vascular adhesion molecule-1 (s-VCAM-1), and high-sensitivity C-reactive protein (hs-CRP) on 158 traffic enforcers from the Metropolitan Manila Development Authority (MMDA) traffic enforcer's health study. Linear mixed-effects models with random subject-specific intercepts were fitted to estimate the association between B-Pb and T-Pb exposure and circulating markers of inflammation, adjusting for confounding factors. RESULTS: Traffic enforcers were middle-aged men (89.4%) with a mean age (± SD) of 37.1 years ± 8.9 years and had a total of 293 valid markers of inflammation measurements. B-Pb concentration was related to increased hs-CRP levels. A 10% increase in B-Pb was associated with a 5.7% increase in hs-CRP level [95% confidence interval (95% CI): 1.3-10.1]. However, B-Pb was not associated with s-ICAM-1 and s-VCAM-1. Furthermore, no associations were observed between T-Pb and all the circulating markers of inflammation. CONCLUSIONS: Low-level B-Pb may increase hs-CRP among traffic enforcers. Moreover, the study suggests that Pb via the oxidative and inflammation pathways may have an essential role in the development of cardiovascular disease. Furthermore, MMDA and the Department of Labor and Employment can use our study's findings as evidence to conduct routine screening of blood heavy metals, especially Pb, among MMDA and other traffic enforcers as part of their yearly medical examination.


Asunto(s)
3,4-Metilenodioxianfetamina/análogos & derivados , Proteína C-Reactiva , Plomo , Masculino , Persona de Mediana Edad , Humanos , Adulto , Proteína C-Reactiva/análisis , Filipinas/epidemiología , Molécula 1 de Adhesión Celular Vascular , Molécula 1 de Adhesión Intercelular , Inflamación/epidemiología , Biomarcadores
2.
Front Toxicol ; 5: 1162749, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37389175

RESUMEN

Of the nearly 1 million military personnel who participated in the 1990-1991 Gulf War, between 25% and 35% became ill with what now is referred to as Gulf War Illness (GWI) by the Department of Defense. Symptoms varied from gastrointestinal distress to lethargy, memory loss, inability to concentrate, depression, respiratory, and reproductive problems. The symptoms have persisted for 30 years in those afflicted but the basis of the illness remains largely unknown. Nerve agents and other chemical exposures in the war zone have been implicated but the long-term effects of these acute exposures have left few if any identifiable signatures. The major aim of this study is to elucidate the possible genomic basis for the persistence of symptoms, especially of the neurological and behavioral effects. To address this, we performed a whole genome epigenetic analysis of the proposed cause of GWI, viz., exposure to organophosphate neurotoxicants combined with high circulating glucocorticoids in two inbred mouse strains, C57BL/6J and DBA/2J. The animals received corticosterone in their drinking water for 7 days followed by injection of diisopropylfluorophosphate, a nerve agent surrogate. Six weeks after DFP injection, the animals were euthanized and medial prefrontal cortex harvested for genome-wide DNA methylation analysis using high-throughput sequencing. We observed 67 differentially methylated genes, notably among them, Ttll7, Akr1c14, Slc44a4, and Rusc2, all related to different symptoms of GWI. Our results support proof of principle of genetic differences in the chronic effects of GWI-related exposures and may reveal why the disease has persisted in many of the now aging Gulf War veterans.

3.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36293318

RESUMEN

Air pollution is a known environmental health hazard. A major source of air pollution includes diesel exhaust (DE). Initially, research on DE focused on respiratory morbidities; however, more recently, exposures to DE have been associated with neurological developmental disorders and neurodegeneration. In this study, we investigated the effects of sub-chronic inhalation exposure to DE on neuroinflammatory markers in two inbred mouse strains and both sexes, including whole transcriptome examination of the medial prefrontal cortex. We exposed aged male and female C57BL/6J (B6) and DBA/2J (D2) mice to DE, which was cooled and diluted with HEPA-filtered compressed air for 2 h per day, 5 days a week, for 4 weeks. Control animals were exposed to HEPA-filtered air on the same schedule as DE-exposed animals. The prefrontal cortex was harvested and analyzed for proinflammatory cytokine gene expression (Il1ß, Il6, Tnfα) and transcriptome-wide response by RNA-seq. We observed differential cytokine gene expression between strains and sexes in the DE-exposed vs. control-exposed groups for Il1ß, Tnfα, and Il6. For RNA-seq, we identified 150 differentially expressed genes between air and DE treatment related to natural killer cell-mediated cytotoxicity per Kyoto Encyclopedia of Genes and Genomes pathways. Overall, our data show differential strain-related effects of DE on neuroinflammation and neurotoxicity and demonstrate that B6 are more susceptible than D2 to gene expression changes due to DE exposures than D2. These results are important because B6 mice are often used as the default mouse model for DE studies and strain-related effects of DE neurotoxicity warrant expanded studies.


Asunto(s)
Contaminantes Atmosféricos , Síndromes de Neurotoxicidad , Animales , Masculino , Femenino , Ratones , Emisiones de Vehículos/toxicidad , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Factor de Necrosis Tumoral alfa , Interleucina-6 , Individualidad , Ratones Endogámicos DBA , Ratones Endogámicos C57BL , Exposición por Inhalación , Citocinas/genética , Citocinas/metabolismo , Genómica
4.
Exp Neurol ; 356: 114158, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35779614

RESUMEN

Restless legs syndrome (RLS) is a common sensorimotor disorder for which two main pathological elements are fairly well accepted: Brain iron deficiency (BID) and an altered dopaminergic system. The ability to better understand the causal and consequential factors related to these two pathological elements, would hopefully lead to the development of better therapeutic strategies for treating, if not curing, this disease. The current understanding of the relationship between these two elements is that BID leads to some alterations in neurotransmitters and subsequent changes in the dopaminergic system. Therefore, rodent models based on diet-induced BID, provide a biological substrate to understand the consequences of BID on dopaminergic pathway and on alternative pathways that may be involved. In this review, we present the current research on dopaminergic changes found in RLS subjects and compare that to what is seen in the BID rodent model to provide a validation of the BID rodent model. We also demonstrate the ability of the BID model to predict changes in other neurotransmitter systems and how that has led to new treatment options. Finally, we will present arguments for the utility of recombinant inbred mouse strains that demonstrate natural variation in brain iron, to explore the genetic basis of altered brain iron homeostasis as a model to understand why in idiopathic RLS there can exist a BID despite normal peripheral iron store. This review is the first to draw on 25 years of human and basic research into the pathophysiology of RLS to provide strong supportive data as to the validity of BID model as an important translational model of the disease. As we will demonstrate here, not only does the BID model closely and accurately mimic what we see in the dopaminergic system of RLS, it is the first model to identify alternative systems from which new treatments have recently been developed.


Asunto(s)
Deficiencias de Hierro , Síndrome de las Piernas Inquietas , Animales , Encéfalo/metabolismo , Dopamina/metabolismo , Humanos , Hierro/metabolismo , Ratones
5.
Front Genet ; 12: 659012, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34367237

RESUMEN

Cannabinoid receptor 1 activation by the major psychoactive component in cannabis, Δ9-tetrahydrocannabinol (THC), produces motor impairments, hypothermia, and analgesia upon acute exposure. In previous work, we demonstrated significant sex and strain differences in acute responses to THC following administration of a single dose (10 mg/kg, i.p.) in C57BL/6J (B6) and DBA/2J (D2) inbred mice. To determine the extent to which these differences are heritable, we quantified acute responses to a single dose of THC (10 mg/kg, i.p.) in males and females from 20 members of the BXD family of inbred strains derived by crossing and inbreeding B6 and D2 mice. Acute THC responses (initial sensitivity) were quantified as changes from baseline for: 1. spontaneous activity in the open field (mobility), 2. body temperature (hypothermia), and 3. tail withdrawal latency to a thermal stimulus (antinociception). Initial sensitivity to the immobilizing, hypothermic, and antinociceptive effects of THC varied substantially across the BXD family. Heritability was highest for mobility and hypothermia traits, indicating that segregating genetic variants modulate initial sensitivity to THC. We identified genomic loci and candidate genes, including Ndufs2, Scp2, Rps6kb1 or P70S6K, Pde4d, and Pten, that may control variation in THC initial sensitivity. We also detected strong correlations between initial responses to THC and legacy phenotypes related to intake or response to other drugs of abuse (cocaine, ethanol, and morphine). Our study demonstrates the feasibility of mapping genes and variants modulating THC responses in the BXDs to systematically define biological processes and liabilities associated with drug use and abuse.

6.
Biometals ; 34(5): 1059-1066, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34176056

RESUMEN

One common characteristic of neurodegenerative diseases is dysregulation of iron, usually with observed increases in its concentration in various regions. Heavy alcohol consumption is believed to contribute to such iron dysregulation in the brain with accompanying dementia. To examine this effect and related genetic-based individual differences in an animal model, we subjected female mice from 12 BXD recombinant inbred strains to 16 weeks of alcohol consumption using the drinking in the dark (DID) method. Daily consumption was recorded and at the end of 16 weeks hippocampus tissues harvested. Concentrations of iron, copper and zinc were measured using X-ray fluorescence technology. The results showed that, DID increased iron overall across all strains, ranging from 3 to 68%. Copper and Zinc both decreased, ranging from 0.4-42 and 5-35% respectively. Analysis of variance revealed significant strain by treatment interactions for all three metals. Additionally, in the DID group, we observed strain differences in reduction of hippocampus mass. These findings are particularly interesting to us because high alcohol consumption in humans has been associated with neurodegeneration and dementia related to disruption of iron regulation. The findings of alcohol consumption associated decreases in copper and zinc are novel. The role of copper regulation and neurological function related to alcohol consumption is as yet largely unexplored. The role of zinc is better known as a neuromodulator in the hippocampus and appears to be protective against neurological damage. It would seem then, that the alcohol-related decrease in zinc in the hippocampus would be of concern and warrants further study.


Asunto(s)
Cobre , Zinc , Animales , Etanol , Femenino , Hipocampo , Hierro , Ratones
7.
Front Toxicol ; 3: 722518, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35295113

RESUMEN

Paraquat (PQ) is a putative risk factor for the development of sporadic Parkinson's disease. To model a possible genetic basis for individual differences in susceptibility to exposure to PQ, we recently examined the effects of paraquat on tyrosine hydroxylase (TH)-containing neurons in the substantia nigra pars compacta (SNc) of six members of the BXD family of mice (n = 2-6 per strain). We injected males with 5 mg/kg paraquat weekly three times. The density of TH+ neurons counted by immunocytochemistry at 200x in eight or more sections through the SNc is reduced in five of the six strains relative to control (N = 4 ± 2 mice per strain). TH+ loss ranged from 0 to 20% with an SEM of 1%. The heritability was estimated using standard ANOVA and jackknife resampling and is 0.37 ± 0.05 in untreated animals and 0.47 ± 0.04 in treated animals. These results demonstrate genetic modulation and GxE variation in susceptibility to PQ exposure and the loss of TH staining in the substantia nigra.

8.
Addict Biol ; 26(2): e12938, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32666571

RESUMEN

Our previous studies consistently showed that MDMA-induced locomotor hyperactivity is dramatically increased by coadministration of ethanol (EtOH) in rats, indicating possible potentiation of MDMA abuse liability. Thus, we aimed to identify the brain region(s) and neuropharmacological substrates involved in the pharmacodynamics of this potentiation. We first showed that potentiation of locomotor activity by the combination of ip administration of EtOH (1.5 g/kg) and MDMA (6.6 mg/kg) is delay sensitive and maximal when both drugs are injected simultaneously. Then, we used the 2-deoxyglucose quantitative autoradiography technique to assess the impact of EtOH, MDMA, or their combination on local cerebral metabolic rates for glucose (CMRglcs). We showed a specific metabolic activation in the ventral striatum (VS) under MDMA + EtOH versus MDMA or EtOH alone. We next tested if reversible (tetrodotoxin, TTX) or permanent (6-hydrodoxyopamine, 6-OHDA) lesion of the VS could affect locomotor response to MDMA and MDMA + EtOH. Finally, we blocked dopamine D1 or glutamate NMDA receptors in the VS and measured the effects of MDMA and MDMA + EtOH on locomotor activity. We showed that bilateral reversible inactivation (TTX) or permanent lesion (6-OHDA) of the VS prevented the potentiation by EtOH of MDMA-induced locomotor hyperactivity. Likewise, blockade of D1 or NMDA receptors in the VS also reduced the potentiation of MDMA locomotor activity by EtOH. These data indicate that dopamine D1 and glutamate NMDA receptor-driven mechanisms in the VS play a key role in the pharmacodynamics of EtOH-induced potentiation of the locomotor effects of MDMA.


Asunto(s)
Etanol/farmacología , N-Metil-3,4-metilenodioxianfetamina/farmacología , Estriado Ventral/efectos de los fármacos , Animales , Combinación de Medicamentos , Sinergismo Farmacológico , Etanol/administración & dosificación , Locomoción/efectos de los fármacos , Masculino , N-Metil-3,4-metilenodioxianfetamina/administración & dosificación , Oxidopamina/farmacología , Ratas , Ratas Long-Evans , Receptores de Dopamina D1/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Tetrodotoxina/farmacología
9.
Front Neurosci ; 14: 818, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32922257

RESUMEN

Gulf War illness (GWI) is a chronic and multi-symptomatic disorder with persistent neuroimmune symptomatology. Chemokine receptor 6 (CCR6) has been shown to be involved in several inflammation disorders in humans. However, the causative relationship between CCR6 and neuroinflammation in GWI has not yet been investigated. By using RNA-seq data of prefrontal cortex (PFC) from 31 C57BL/6J X DBA/2J (BXD) recombinant inbred (RI) mouse strains and their parental strains under three chemical treatment groups - saline control (CTL), diisopropylfluorophosphate (DFP), and corticosterone combined with diisopropylfluorophosphate (CORT+DFP), we identified Ccr6 as a candidate gene underlying individual differences in susceptibility to GWI. The Ccr6 gene is cis-regulated and its expression is significantly correlated with CORT+DFP treatment. Its mean transcript abundance in PFC of BXD mice decreased 1.6-fold (p < 0.0001) in the CORT+DFP group. The response of Ccr6 to CORT+DFP is also significantly different (p < 0.0001) between the parental strains, suggesting Ccr6 is affected by both host genetic background and chemical treatments. Pearson product-moment correlation analysis revealed 1473 Ccr6-correlated genes (p < 0.05). Enrichment of these genes was seen in the immune, inflammation, cytokine, and neurological related categories. In addition, we also found five central nervous system-related phenotypes and fecal corticosterone concentration have significant correlation (p < 0.05) with expression of Ccr6 in the PFC. We further established a protein-protein interaction subnetwork for the Ccr6-correlated genes, which provides an insight on the interaction of G protein-coupled receptors, kallikrein-kinin system and neuroactive ligand-receptors. This analysis likely defines the heterogeneity and complexity of GWI. Therefore, our results suggest that Ccr6 is one of promising GWI biomarkers.

10.
Cannabis Cannabinoid Res ; 5(3): 231-245, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32923660

RESUMEN

Background and Objectives: For cannabis and other drugs of abuse, initial response and/or tolerance to drug effects can predict later dependence and problematic use. Our objective is to identify sex and genetic (strain) differences in initial response and rapid tolerance to Δ9-tetrahydrocannabinol (THC), the main psychoactive ingredient in cannabis, between highly genetically divergent inbred mouse strains-C57BL/6J (B6) and DBA/2J (D2). Experimental Approach: Sex and strain responses relative to baseline were quantified following daily exposure (i.p.) to 10 mg/kg THC or vehicle (VEH) over the course of 5 days. Dependent measures included hypothermia (decreased body temperature) and ataxia (decreased spontaneous activity in the open field), and antinociception (increase in tail withdrawal latency to a thermal stimulus). Initial sensitivity to THC was defined as the difference in response between baseline and day 1. Rapid tolerance to THC was defined as the difference in response between days 1 and 2. Results: B6 exhibited greater THC-induced motor activity suppression and initial sensitivity to ataxia relative to the D2 strain. Females demonstrated greater levels of THC-induced hypothermia and initial sensitivity relative to males. Higher levels of THC-induced antinociception and initial sensitivity were observed for D2 relative to B6. Rapid tolerance to THC was observed for hypothermia and antinociception. Much less tolerance was observed for THC-induced ataxia. D2 exhibited rapid tolerance to THC-induced hypothermia and antinociception at time points associated with peak THC initial response. Likewise, at the peak initial THC response time point, females demonstrated greater levels of rapid tolerance to hypothermic effects relative to males. Conclusions: Both sex and genetic factors drive variation in initial response and rapid tolerance to the ataxic, antinociceptive, and hypothermic effects of THC. As these traits directly result from THC activation of the cannabinoid receptor 1, gene variants between B6 and D2 in cannabinoid signaling pathways are likely to mediate strain differences in response to THC.

11.
Brain Behav Immun ; 89: 209-223, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32574576

RESUMEN

Gulf War Illness (GWI) is thought to be a chronic neuroimmune disorder caused by in-theater exposure during the 1990-1991 Gulf War. There is a consensus that the illness is caused by exposure to insecticides and nerve agent toxicants. However, the heterogeneity in both development of disease and clinical outcomes strongly suggests a genetic contribution. Here, we modeled GWI in 30 BXD recombinant inbred mouse strains with a combined treatment of corticosterone (CORT) and diisopropyl fluorophosphate (DFP). We quantified transcriptomes from 409 prefrontal cortex samples. Compared to the untreated and DFP treated controls, the combined treatment significantly activated pathways such as cytokine-cytokine receptor interaction and TNF signaling pathway. Protein-protein interaction analysis defined 6 subnetworks for CORT + DFP, with the key regulators being Cxcl1, Il6, Ccnb1, Tnf, Agt, and Itgam. We also identified 21 differentially expressed genes having significant QTLs related to CORT + DFP, but without evidence for untreated and DFP treated controls, suggesting regions of the genome specifically involved in the response to CORT + DFP. We identified Adamts9 as a potential contributor to response to CORT + DFP and found links to symptoms of GWI. Furthermore, we observed a significant effect of CORT + DFP treatment on the relative proportion of myelinating oligodendrocytes, with a QTL on Chromosome 5. We highlight three candidates, Magi2, Sema3c, and Gnai1, based on their high expression in the brain and oligodendrocyte. In summary, our results show significant genetic effects of the CORT + DFP treatment, which mirrors gene and protein expression changes seen in GWI sufferers, providing insight into the disease and a testbed for future interventions.


Asunto(s)
Guerra del Golfo , Síndrome del Golfo Pérsico , Animales , Ratones , Modelos Animales de Enfermedad , Subunidades alfa de la Proteína de Unión al GTP Gi-Go , Isoflurofato , Síndrome del Golfo Pérsico/genética , Transcriptoma
12.
Toxicol Sci ; 176(1): 137-146, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32294219

RESUMEN

Paraquat (PQ) is an herbicide used in many countries, including the United States. It is also implicated as a risk factor for sporadic Parkinson's disease, especially in those living in agricultural areas and drinking well water. Studies linking PQ to sporadic Parkinson's disease are not consistent however and there appears to be interindividual differential susceptibility. One likely reason is genetically based differential susceptibility to paraquat neurotoxicity in subpopulations. To address this issue, we tested the effects of paraquat in a genetic reference population of mice (the BXD recombinant inbred strain family). In our earlier work, we showed that in genetically susceptible mice, paraquat increases iron in the ventral midbrain, the area containing the substantia nigra. Our hypothesis is that genetic variability contributes to diverse PQ-related susceptibility and iron concentration. To test this hypothesis, we treated male mice from 28 to 39 BXD strains plus the parental strains with 1 of 3 doses of paraquat, 1, 5, and 10 mg/kg 3 times on a weekly basis. At the end of the treatment period, we analyzed the ventral midbrain for concentrations of iron, copper, and zinc, also we measured the concentration of paraquat in cerebellum, and proinflammatory cytokines in serum and cerebellum. The effect on paraquat-treated mice with 5 mg/kg and principal component analysis of iron showed suggestive quantitative trait loci on chromosome 5. Overall, our results suggest that gene Prkag2 and related networks may serve as potential targets against paraquat toxicity and demonstrate the utility of genetically diverse mouse models for the study of complex human toxicity.


Asunto(s)
Herbicidas/toxicidad , Paraquat/toxicidad , Biología de Sistemas , Animales , Encéfalo , Hierro , Masculino , Mesencéfalo , Ratones , Ratones Endogámicos C57BL , Enfermedad de Parkinson , Sustancia Negra
13.
Brain Sci ; 10(3)2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-32131477

RESUMEN

Between 25% and 30% of the nearly one million military personnel who participated in the 1991 Persian Gulf War became ill with chronic symptoms ranging from gastrointestinal to nervous system dysfunction. This disorder is now referred to as Gulf War Illness (GWI) and the underlying pathophysiology has been linked to exposure-based neuroinflammation caused by organophosphorous (OP) compounds coupled with high circulating glucocorticoids. In a mouse model of GWI we developed, corticosterone was shown to act synergistically with an OP (diisopropylflurophosphate) to dramatically increase proinflammatory cytokine gene expression in the brain. Because not all Gulf War participants became sick, the question arises as to whether differential genetic constitution might underlie individual differences in susceptibility. To address this question of genetic liability, we tested the impact of OP and glucocorticoid exposure in a genetic reference population of 30 inbred mouse strains. We also studied both sexes. The results showed wide differences among strains and overall that females were less sensitive to the combined treatment than males. Furthermore, we identified one OP-glucocorticoid locus and nominated a candidate gene-Spon1-that may underlie the marked differences in response.

14.
Sleep Med ; 71: 141-148, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32094092

RESUMEN

BACKGROUND: Brain iron deficiency (BID), especially for the substantia nigra (SN), without peripheral iron deficiency (ID) has been well documented as a ubiquitous finding for restless legs syndrome (RLS) patients. This close association suggests the biology of RLS BID can produce RLS symptoms. Association, however, cannot establish such a direct relationship. Instead, the BID of RLS could be experimentally produced to determine if it then produces significant RLS-like biological or behavioral features. Forward genetics approach led to identification from the BXD strains the BXD40 females (BXD40f) as a putative animal model for the RLS BID. The BXD40f on an iron-sufficient diet have a lower iron in the VMB (containing the SN) during the active but not inactive period. This was not found for the other BXD strains evaluated. The BXD40f on an ID diet uniquely have even greater reduced VMB but not peripheral iron, matching the RLS BID pathophysiology. A prior report found that the BXD40f on an iron-sufficient diet had an RLS-like behavior of increased activity occurring only in the last part of the active period that was not present in the other strains without the low VMB iron. This increased activity matches the circadian pattern of symptoms in RLS patients with increased urge or drive to move in the last part of the day. This study asks first: if you decrease the VMB iron by an iron deficient diet do the RLS-like behaviors worsen; and second will the dopaminergic treatments effective for RLS also reduce the worsened RLSlike behaviors. METHODS: In sum, 13 BXD40f mice post weaning were randomly assigned for 100 days to either a iron-sufficient diet (n = 6) or an ID diet (N = 7). They were then evaluated for 24-h activity in their home cage using implanted G2 EMitter telemetry device. At 3 h before the end of the active period IP doses were given every other day of either: saline (vehicle only), 12.5 mg levodopa, 25 mg levodopa, 0.5 mg quinpirole, or 1 0.0 mg quinpirole. RESULTS: The ID compared to irons-sufficient diet produced earlier onset of the RLS-like behavior matching the earlier onset of symptoms with increasing severity of RLS. The dopaminergic treatments significantly reduced the RLS-like behavior. Added analyses of the RLS-like behaviors as decreased resting times showed similar results to activity increases. CONCLUSIONS: These data demonstrate both that The BXD40f provide a useful animal model of RLS and also strongly support the hypothesis that the biology of RLS BID can produce RLS symptoms.


Asunto(s)
Anemia Ferropénica , Síndrome de las Piernas Inquietas , Anemia Ferropénica/tratamiento farmacológico , Animales , Encéfalo , Modelos Animales de Enfermedad , Femenino , Humanos , Hierro , Ratones , Síndrome de las Piernas Inquietas/tratamiento farmacológico
15.
Psychiatry Res ; 285: 112760, 2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-32045820

RESUMEN

The mineralocorticoid receptor (Nr3c2) has received increased attention as an important stress-related gene. Here, we sought to uncover candidate genes regulating the expression of Nr3c2. Using a genetical genomics approach, we identified a significant trans-regulated expression quantitative trait locus (eQTL) at Chromosome 10 for Nr3c2 expression in the amygdala of BXD RI strains. We then examined genes upstream of the eQTL to identify likely regulatory candidates of Nr3c2 expression. Pex3 (peroxisomal) expression was highly correlated with that of Nr3c2, had a significant cis-regulated eQTL that mapped to the Nr3c2 eQTL region and thus emerged as the most likely regulatory candidate of Nr3c2 expression. In vitro studies showed that silencing of Pex3 by siRNA decreased Nr3c2 expression in HEK293T and SHSY5 cell lines while overexpression increased Nr3c2 expression. A relationship between the expression of these two genes was further supported by our observations that expression levels of Pex3 and Nr3c2 decreased in the amygdala of mice exposed to chronic unpredictable stress. Our findings provide insight into the genetic regulation of Nr3c2 expression and suggest a new role for Pex3 in stress responses. Future characterization of Pex3's role in the regulation of Nr3c2 expression and the pathways involved may lead to a better understanding of stress responses and risk for stress-related pathology.

16.
Sleep Med ; 71: 135-140, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32044226

RESUMEN

BACKGROUND: The primary symptoms of Restless Legs Syndrome (RLS) are circadian-dependent, leading to increased activity or decreased rest, especially at night. The primary pathology in RLS is brain iron insufficiency despite normal systemic iron stores. Natural variances in brain and peripheral iron concentrations across recombinant inbred (RI) murine strains provide a biological model of RLS. The question is whether these RI mice strains show a behavioral analog to circadian-dependent clinical phenotype of RLS. METHODS: The home cage activity of eight female RI strains was measured over a 72-h period. The ratio of the average activity in the last 2 h of the active period relative to that in the total 12-h active period (late active period activity ratio, LAPAR) was the primary outcome variable. The relation of average LAPAR scores to measures of ventral midbrain (VMB) iron was evaluated across strains in this study. RESULTS: RI strain 40 (LAPAR = 1.28) and RI strain 21 (LAPAR = 1.02) were the only strains to show an increased activity in the last part of the active period. ANOVA showed the increased activity was significantly greater during the last 2 h compared to the preceding 10 h of the active phase only for the RI strain 40. Average LAPAR across the eight strains did not significantly correlate with the VMB iron content (r = -0.27, p < 0.10) but did correlate with changes in VMB iron with iron deficiency (r = 0.71, p < 0.05) and diurnal change in VMB iron (r = 0.65, p < 0.05). CONCLUSION: The female RI strain 40 mice exhibited a distinct end-of-active-period behavior analogous to circadian-dependent clinical phenotype of RLS.


Asunto(s)
Síndrome de las Piernas Inquietas , Animales , Encéfalo , Femenino , Hierro , Mesencéfalo , Ratones
17.
Front Mol Neurosci ; 12: 128, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31178692

RESUMEN

C57BL/6J (B6) and DBA/2J (D2) inbred mouse strains are highly variable genetically and differ in a large number of behavioral traits related to striatal function, including depression, anxiety, stress response, and response to drugs of abuse. The genetic basis of these phenotypic differences are, however, unknown. Here, we present a comparison of the striatal proteome between B6 and D2 and relate differences at the protein level to strain differences at the mRNA level. We also leverage a recombinant inbred BXD population derived from B6 and D2 strains to investigate the role of genetic variation on the regulation of mRNA and protein levels. Finally, we test the hypothesis that differential protein expression contributes to differential behavioral responses between the B6 and D2 strain. We detected the expression of over 2,500 proteins in membrane-enriched protein fractions from B6 and D2 striatum. Of these, 160 proteins demonstrated significant differential expression between B6 and D2 strains at a 10% false discovery level, including COMT, GABRA2, and cannabinoid receptor 1 (CNR1)-key proteins involved in synaptic transmission and behavioral response. Similar to previous reports, there was little overlap between protein and transcript levels (25%). However, the overlap was greater (51%) for proteins demonstrating genetic regulation of cognate gene expression. We also found that striatal proteins with significantly higher or lower relative expression in B6 and D2 were enriched for dopaminergic and glutamatergic synapses and processes involved in synaptic plasticity [e.g., long-term potentiation (LTP) and long-term depression (LTD)]. Finally, we validated higher expression of CNR1 in B6 striatum and demonstrated greater sensitivity of this strain to the locomotor inhibiting effects of the CNR1 agonist, Δ9-tetrahydrocannabinol (THC). Our study is the first comparison of differences in striatal proteins between the B6 and D2 strains and suggests that alterations in the striatal proteome may underlie strain differences in related behaviors, such as drug response. Furthermore, we propose that genetic variants that impact transcript levels are more likely to also exhibit differential expression at the protein level.

18.
Front Neurosci ; 13: 438, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31164799

RESUMEN

Individual differences in physiological and biobehavioral adaptation to chronic stress are important predictors of health and fitness; genetic differences play an important role in this adaptation. To identify these differences we measured the biometric, neuroendocrine, and transcriptional response to stress among inbred mouse strains with varying degrees of genetic similarity, C57BL/6J (B), C57BL/6NJ (N), and DBA/2J (D). The B and D strains are highly genetically diverse whereas the B and N substrains are highly similar. Strain differences in hypothalamic-pituitary-adrenal (HPA) axis cross-sensitization were determined by plasma corticosterone (CORT) levels and hippocampal gene expression following 7-weeks of chronic mild stress (CMS) or normal housing (NH) and subsequent exposure to novel acute restraint. Fecal CORT metabolites and body and organ weights were also measured. All strains exposed to CMS had reduced heart weights, whereas body weight gain was attenuated only in B and N strains. Acute stress alone produced larger plasma CORT responses in the D and N strains compared to the B strain. CMS paired with acute stress produced cross-sensitization of the CORT response in the N strain. The N strain also had the largest number of hippocampal transcripts with up-regulated expression in response to stress. In contrast, the D strain had the largest number of transcripts with down-regulated expression following CMS and acute stress. In summary, we observed differential responses to CMS at both the physiological and molecular level among genetically diverse strains, indicating that genetic factors drive individual differences in experience-dependent regulation of the stress response.

19.
Alcohol Clin Exp Res ; 43(7): 1391-1402, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31034606

RESUMEN

BACKGROUND: The effect of stress on alcohol consumption in humans is highly variable, and the underlying processes are not yet understood. Attempts to model a positive relationship between stress and increased ethanol (EtOH) consumption in animals have been only modestly successful. Our hypothesis is that individual differences in stress effects on EtOH consumption are mediated by genetics. METHODS: We measured alcohol consumption, using the drinking-in-the-dark (DID) paradigm in females from 2 inbred mouse strains, C57BL/6J (B6) and DBA/2J (D2), and 35 of their inbred progeny (the BXD family). A control group was maintained in normal housing and a stress group was exposed to chronic mild stress (CMS), consisting of unpredictable stressors over 7 weeks. These included predator, social, and environmental perturbations. Alcohol intake was measured over 16 weeks in both groups during baseline (preceding 5-week period), CMS (intervening 7-week period), and post-CMS (final 4-week period). RESULTS: We detected a strong effect of CMS on alcohol intake. A few strains demonstrated CMS-related increased alcohol consumption; however, most showed decreased intake. We identified 1 nearly significant quantitative trait locus on chromosome 5 that contains the neuronal nitric oxide synthase gene (Nos1). The expression of Nos1 is frequently changed following alcohol exposure, and variants in this gene segregating among the BXD population may modulate alcohol intake in response to stress. CONCLUSIONS: The results we present here represent the first study to combine chronic stress and alcohol consumption in a genetic reference population of mice. Differences in susceptibility to the effects of stressful environments vis-à-vis alcohol use disorders would suggest that the differences have at least some basis in genetic constitution. We have also nominated a likely candidate gene underlying the large individual differences in effects of stress on alcohol consumption.


Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Consumo de Bebidas Alcohólicas/psicología , Estrés Psicológico/genética , Estrés Psicológico/psicología , Animales , Mapeo Cromosómico , Cromosomas/genética , Femenino , Variación Genética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo I/metabolismo , Conducta Predatoria , Sitios de Carácter Cuantitativo , Medio Social , Especificidad de la Especie
20.
Gene ; 696: 176-185, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30769143

RESUMEN

Tachykinin 2 (Tac2) is expressed in a number of areas throughout the brain, including the hippocampus. However, knowledge about its function has been only well explored in the hypothalamus in the context of reproductive health. In this study, we identified and validated increased hippocampal Tac2 mRNA expression in response to chronic mild stress in mice. Expression quantitative trait locus (eQTL) analysis showed Tac2 is cis-regulated in the hippocampus. Using a systems genetics approach, we constructed a Tac2 co-expression network to better understand the relationship between Tac2 and the hippocampal stress response. Our network identified 69 total genes associated with Tac2, several of which encode major neuropeptides involved in hippocampal stress signaling as well as critical genes for producing neural plasticity, indicating that Tac2 is involved in these processes. Pathway analysis for the member of Tac2 gene network revealed a strong connection between Tac2 and neuroactive ligand-receptor interaction, calcium signaling pathway, as well as cardiac muscle contraction. In addition, we also identified 46 stress-related phenotypes, specifically fear conditioning response, that were significantly correlated with Tac2 expression. Our results provide evidence for Tac2 as a strong candidate gene who likely plays a role in hippocampal stress processing and neural plasticity.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Redes Reguladoras de Genes/fisiología , Hipocampo/fisiología , Precursores de Proteínas/fisiología , Estrés Psicológico/fisiopatología , Taquicininas/fisiología , Animales , Condicionamiento Psicológico/fisiología , Miedo/fisiología , Femenino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Plasticidad Neuronal/fisiología , ARN Mensajero/metabolismo , Estrés Psicológico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...