Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
J Pathol ; 259(2): 163-179, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36420735

RESUMEN

Invadopodia are actin-rich membrane protrusions that digest the matrix barrier during cancer metastasis. Since the discovery of invadopodia, they have been visualized as localized and dot-like structures in different types of cancer cells on top of a 2D matrix. In this investigation of Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC), a highly invasive cancer frequently accompanied by neck lymph node and distal organ metastases, we revealed a new form of invadopodium with mobilizing features. Integration of live-cell imaging and molecular assays revealed the interaction of macrophage-released TNFα and EBV-encoded latent membrane protein 1 (LMP1) in co-activating the EGFR/Src/ERK/cortactin and Cdc42/N-WASP signaling axes for mobilizing the invadopodia with lateral movements. This phenomenon endows the invadopodia with massive degradative power, visualized as a shift of focal dot-like digestion patterns on a 2D gelatin to a dendrite-like digestion pattern. Notably, single stimulation of either LMP1 or TNFα could only enhance the number of ordinary dot-like invadopodia, suggesting that the EBV infection sensitizes the NPC cells to form mobilizing invadopodia when encountering a TNFα-rich tumor microenvironment. This study unveils the interplay of EBV and stromal components in driving the invasive potential of NPC via unleashing the propulsion of invadopodia in overcoming matrix hurdles. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Neoplasias Nasofaríngeas , Podosomas , Humanos , Carcinoma Nasofaríngeo/patología , Podosomas/metabolismo , Podosomas/patología , Herpesvirus Humano 4/metabolismo , Neoplasias Nasofaríngeas/patología , Factor de Necrosis Tumoral alfa/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Matriz Viral/metabolismo , Microambiente Tumoral
2.
Sci Adv ; 8(15): eabm3471, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35427166

RESUMEN

Vascular smooth muscle cells (VSMCs) play a central role in the progression of atherosclerosis, where they switch from a contractile to a synthetic phenotype. Because of their role as risk factors for atherosclerosis, we sought here to systematically study the impact of matrix stiffness and (hemodynamic) pressure on VSMCs. Thereby, we find that pressure and stiffness individually affect the VSMC phenotype. However, only the combination of hypertensive pressure and matrix compliance, and as such mechanical stimuli that are prevalent during atherosclerosis, leads to a full phenotypic switch including the formation of matrix-degrading podosomes. We further analyze the molecular mechanism in stiffness and pressure sensing and identify a regulation through different but overlapping pathways culminating in the regulation of the actin cytoskeleton through cofilin. Together, our data show how different pathological mechanical signals combined but through distinct pathways accelerate a phenotypic switch that will ultimately contribute to atherosclerotic disease progression.


Asunto(s)
Aterosclerosis , Músculo Liso Vascular , Aterosclerosis/patología , Proliferación Celular , Células Cultivadas , Humanos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Fenotipo
3.
Fungal Divers ; 111(1): 1-335, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899100

RESUMEN

This article is the 13th contribution in the Fungal Diversity Notes series, wherein 125 taxa from four phyla, ten classes, 31 orders, 69 families, 92 genera and three genera incertae sedis are treated, demonstrating worldwide and geographic distribution. Fungal taxa described and illustrated in the present study include three new genera, 69 new species, one new combination, one reference specimen and 51 new records on new hosts and new geographical distributions. Three new genera, Cylindrotorula (Torulaceae), Scolecoleotia (Leotiales genus incertae sedis) and Xenovaginatispora (Lindomycetaceae) are introduced based on distinct phylogenetic lineages and unique morphologies. Newly described species are Aspergillus lannaensis, Cercophora dulciaquae, Cladophialophora aquatica, Coprinellus punjabensis, Cortinarius alutarius, C. mammillatus, C. quercoflocculosus, Coryneum fagi, Cruentomycena uttarakhandina, Cryptocoryneum rosae, Cyathus uniperidiolus, Cylindrotorula indica, Diaporthe chamaeropicola, Didymella azollae, Diplodia alanphillipsii, Dothiora coronicola, Efibula rodriguezarmasiae, Erysiphe salicicola, Fusarium queenslandicum, Geastrum gorgonicum, G. hansagiense, Helicosporium sexualis, Helminthosporium chiangraiensis, Hongkongmyces kokensis, Hydrophilomyces hydraenae, Hygrocybe boertmannii, Hyphoderma australosetigerum, Hyphodontia yunnanensis, Khaleijomyces umikazeana, Laboulbenia divisa, Laboulbenia triarthronis, Laccaria populina, Lactarius pallidozonarius, Lepidosphaeria strobelii, Longipedicellata megafusiformis, Lophiotrema lincangensis, Marasmius benghalensis, M. jinfoshanensis, M. subtropicus, Mariannaea camelliae, Melanographium smilaxii, Microbotryum polycnemoides, Mimeomyces digitatus, Minutisphaera thailandensis, Mortierella solitaria, Mucor harpali, Nigrograna jinghongensis, Odontia huanrenensis, O. parvispina, Paraconiothyrium ajrekarii, Parafuscosporella niloticus, Phaeocytostroma yomensis, Phaeoisaria synnematicus, Phanerochaete hainanensis, Pleopunctum thailandicum, Pleurotheciella dimorphospora, Pseudochaetosphaeronema chiangraiense, Pseudodactylaria albicolonia, Rhexoacrodictys nigrospora, Russula paravioleipes, Scolecoleotia eriocamporesi, Seriascoma honghense, Synandromyces makranczyi, Thyridaria aureobrunnea, Torula lancangjiangensis, Tubeufia longihelicospora, Wicklowia fusiformispora, Xenovaginatispora phichaiensis and Xylaria apiospora. One new combination, Pseudobactrodesmium stilboideus is proposed. A reference specimen of Comoclathris permunda is designated. New host or distribution records are provided for Acrocalymma fici, Aliquandostipite khaoyaiensis, Camarosporidiella laburni, Canalisporium caribense, Chaetoscutula juniperi, Chlorophyllum demangei, C. globosum, C. hortense, Cladophialophora abundans, Dendryphion hydei, Diaporthe foeniculina, D. pseudophoenicicola, D. pyracanthae, Dictyosporium pandanicola, Dyfrolomyces distoseptatus, Ernakulamia tanakae, Eutypa flavovirens, E. lata, Favolus septatus, Fusarium atrovinosum, F. clavum, Helicosporium luteosporum, Hermatomyces nabanheensis, Hermatomyces sphaericoides, Longipedicellata aquatica, Lophiostoma caudata, L. clematidis-vitalbae, Lophiotrema hydei, L. neoarundinaria, Marasmiellus palmivorus, Megacapitula villosa, Micropsalliota globocystis, M. gracilis, Montagnula thailandica, Neohelicosporium irregulare, N. parisporum, Paradictyoarthrinium diffractum, Phaeoisaria aquatica, Poaceascoma taiwanense, Saproamanita manicata, Spegazzinia camelliae, Submersispora variabilis, Thyronectria caudata, T. mackenziei, Tubeufia chiangmaiensis, T. roseohelicospora, Vaginatispora nypae, Wicklowia submersa, Xanthagaricus necopinatus and Xylaria haemorrhoidalis. The data presented herein are based on morphological examination of fresh specimens, coupled with analysis of phylogenetic sequence data to better integrate taxa into appropriate taxonomic ranks and infer their evolutionary relationships.

4.
Eur J Cell Biol ; 99(7): 151106, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33070038

RESUMEN

Podosomes are mechanosensitive attachment/invasion structures that form on the matrix-adhesion interface of cells and protrude into the extracellular matrix to probe and remodel. Despite their central role in many cellular processes, their exact molecular structure and function remain only partially understood. We review recent progress in molecular scale imaging of podosome architecture, including our newly developed localisation microscopy technique termed HAWK which enables artefact-free live-cell super-resolution microscopy of podosome ring proteins, and report new results on combining fluorescence localisation microscopy (STORM/PALM) and atomic force microscopy (AFM) on one setup, where localisation microscopy provides the location and dynamics of fluorescently labelled podosome components, while the spatial variation of stiffness is mapped with AFM. For two-colour localisation microscopy we combine iFluor-647, which has previously been shown to eliminate the need to change buffer between imaging modes, with the photoswitchable protein mEOS3.2, which also enables live cell imaging.


Asunto(s)
Microscopía de Fuerza Atómica/métodos , Microscopía Fluorescente/métodos , Podosomas/metabolismo , Humanos , Transfección
6.
Cell Rep ; 29(11): 3385-3393.e6, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31825823

RESUMEN

p21-Activated kinase 4 (PAK4), a serine/threonine kinase, is purported to localize to podosomes: transient adhesive structures that degrade the extracellular matrix to facilitate rapid myeloid cell migration. We find that treatment of transforming growth factor ß (TGF-ß)-differentiated monocytic (THP-1) cells with a PAK4-targeted inhibitor significantly reduces podosome formation and induces the formation of focal adhesions. This switch in adhesions confers a diminution of matrix degradation and reduced cell migration. Furthermore, reduced PAK4 expression causes a significant reduction in podosome number that cannot be rescued by kinase-dead PAK4, supporting a kinase-dependent role. Concomitant with PAK4 depletion, phosphorylation of Akt is perturbed, whereas a specific phospho-Akt signal is detected within the podosomes. Using superresolution analysis, we find that PAK4 specifically localizes in the podosome ring, nearer to the actin core than other ring proteins. We propose PAK4 kinase activity intersects with the Akt pathway at the podosome ring:core interface to drive regulation of macrophage podosome turnover.


Asunto(s)
Células Mieloides/metabolismo , Podosomas/metabolismo , Quinasas p21 Activadas/metabolismo , Células Cultivadas , Disulfuros/farmacología , Matriz Extracelular/metabolismo , Adhesiones Focales/metabolismo , Células HEK293 , Humanos , Células Mieloides/efectos de los fármacos , Células Mieloides/ultraestructura , Naftoles/farmacología , Fosforilación , Podosomas/ultraestructura , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Células THP-1 , Quinasas p21 Activadas/antagonistas & inhibidores
7.
Philos Trans R Soc Lond B Biol Sci ; 374(1779): 20180228, 2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-31431172

RESUMEN

Podosomes are a singular category of integrin-mediated adhesions important in the processes of cell migration, matrix degradation and cancer cell invasion. Despite a wealth of biochemical studies, the effects of mechanical forces on podosome integrity and dynamics are poorly understood. Here, we show that podosomes are highly sensitive to two groups of physical factors. First, we describe the process of podosome disassembly induced by activation of myosin-IIA filament assembly. Next, we find that podosome integrity and dynamics depends upon membrane tension and can be experimentally perturbed by osmotic swelling and deoxycholate treatment. We have also found that podosomes can be disrupted in a reversible manner by single or cyclic radial stretching of the substratum. We show that disruption of podosomes induced by osmotic swelling is independent of myosin-II filaments. The inhibition of the membrane sculpting protein, dynamin-II, but not clathrin, resulted in activation of myosin-IIA filament formation and disruption of podosomes. The effect of dynamin-II inhibition on podosomes was, however, independent of myosin-II filaments. Moreover, formation of organized arrays of podosomes in response to microtopographic cues (the ridges with triangular profile) was not accompanied by reorganization of myosin-II filaments. Thus, mechanical elements such as myosin-II filaments and factors affecting membrane tension/sculpting independently modulate podosome formation and dynamics, underlying a versatile response of these adhesion structures to intracellular and extracellular cues. This article is part of a discussion meeting issue 'Forces in cancer: interdisciplinary approaches in tumour mechanobiology'.


Asunto(s)
Movimiento Celular , Miosina Tipo IIA no Muscular/metabolismo , Podosomas/metabolismo , Humanos , Células Tumorales Cultivadas/metabolismo
9.
Nat Mater ; 18(6): 638-649, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31114072

RESUMEN

The interrelationship between microtubules and the actin cytoskeleton in mechanoregulation of integrin-mediated adhesions is poorly understood. Here, we show that the effects of microtubules on two major types of cell-matrix adhesion, focal adhesions and podosomes, are mediated by KANK family proteins connecting the adhesion protein talin with microtubule tips. Both total microtubule disruption and microtubule uncoupling from adhesions by manipulations with KANKs trigger a massive assembly of myosin IIA filaments, augmenting focal adhesions and disrupting podosomes. Myosin IIA filaments are indispensable effectors in the microtubule-driven regulation of integrin-mediated adhesions. Myosin IIA filament assembly depends on Rho activation by the RhoGEF GEF-H1, which is trapped by microtubules when they are connected with integrin-mediated adhesions via KANK proteins but released after their disconnection. Thus, microtubule capture by integrin-mediated adhesions modulates the GEF-H1-dependent effect of microtubules on the assembly of myosin IIA filaments. Subsequent actomyosin reorganization then remodels the focal adhesions and podosomes, closing the regulatory loop.


Asunto(s)
Adhesiones Focales/metabolismo , Integrinas/metabolismo , Microtúbulos/metabolismo , Miosina Tipo IIA no Muscular/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Proteínas del Citoesqueleto , Humanos , Mecanotransducción Celular , Podosomas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Quinasas Asociadas a rho/metabolismo
10.
Nat Methods ; 15(9): 689-692, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30061677

RESUMEN

High-density analysis methods for localization microscopy increase acquisition speed but produce artifacts. We demonstrate that these artifacts can be eliminated by the combination of Haar wavelet kernel (HAWK) analysis with standard single-frame fitting. We tested the performance of this method on synthetic, fixed-cell, and live-cell data, and found that HAWK preprocessing yielded reconstructions that reflected the structure of the sample, thus enabling high-speed, artifact-free super-resolution imaging of live cells.


Asunto(s)
Microscopía Fluorescente/métodos , Algoritmos , Artefactos , Procesamiento de Imagen Asistido por Computador
11.
Bioinformatics ; 34(23): 4102-4111, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29868717

RESUMEN

Motivation: Clustering analysis is a key technique for quantitatively characterizing structures in localization microscopy images. To build up accurate information about biological structures, it is critical that the quantification is both accurate (close to the ground truth) and precise (has small scatter and is reproducible). Results: Here, we describe how the Rényi divergence can be used for cluster radius measurements in localization microscopy data. We demonstrate that the Rényi divergence can operate with high levels of background and provides results which are more accurate than Ripley's functions, Voronoi tesselation or DBSCAN. Availability and implementation: The data supporting this research and the software described are accessible at the following site: https://dx.doi.org/10.18742/RDM01-316. Correspondence and requests for materials should be addressed to the corresponding author. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Análisis por Conglomerados , Procesamiento de Imagen Asistido por Computador , Microscopía , Programas Informáticos
12.
Cell Death Dis ; 8(10): e3114, 2017 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-29022901

RESUMEN

Chronic myeloid leukemia (CML) is a myeloproliferative disease caused by the BCR-ABL1 tyrosine kinase (TK). The development of TK inhibitors (TKIs) revolutionized the treatment of CML patients. However, TKIs are not effective to those at advanced phases when amplified BCR-ABL1 levels and increased genomic instability lead to secondary oncogenic modifications. Wiskott-Aldrich syndrome protein (WASP) is an important regulator of signaling transduction in hematopoietic cells and was shown to be an endogenous inhibitor of the c-ABL TK. Here, we show that the expression of WASP decreases with the progression of CML, inversely correlates with the expression of BCR-ABL1 and is particularly low in blast crisis. Enforced expression of BCR-ABL1 negatively regulates the expression of WASP. Decreased expression of WASP is partially due to DNA methylation of the proximal WASP promoter. Importantly, lower levels of WASP in CML advanced phase patients correlate with poorer overall survival (OS) and is associated with TKI response. Interestingly, enforced expression of WASP in BCR-ABL1-positive K562 cells increases the susceptibility to apoptosis induced by TRAIL or chemotherapeutic drugs and negatively modulates BCR-ABL1-induced tumorigenesis in vitro and in vivo. Taken together, our data reveal a novel molecular mechanism that operates in BCR-ABL1-induced tumorigenesis that can be used to develop new strategies to help TKI-resistant, CML patients in blast crisis (BC).


Asunto(s)
Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Proteínas de Fusión bcr-abl/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Azacitidina/uso terapéutico , Carcinogénesis/genética , Metilación de ADN/efectos de los fármacos , Metilación de ADN/genética , Resistencia a Antineoplásicos , Epigénesis Genética , Proteínas de Fusión bcr-abl/biosíntesis , Humanos , Mesilato de Imatinib/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/mortalidad , Regiones Promotoras Genéticas/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Transducción de Señal/fisiología , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Proteína del Síndrome de Wiskott-Aldrich/biosíntesis , Proteína del Síndrome de Wiskott-Aldrich/genética
13.
Int. braz. j. urol ; 43(3): 394-406, May.-June 2017. graf
Artículo en Inglés | LILACS | ID: biblio-840842

RESUMEN

ABSTRACT Background Shock wave lithotripsy (SWL) is the first line treatment modality for a significant proportion of patients with upper urinary tracts stones. Simple analgesics, opioids and non-steroidal anti-inflammatory drugs (NSAIDs) are all suitable agents but the relative efficacy and tolerability of these agents is uncertain. Objectives To determine the efficacy of the different types of analgesics used for the control of pain during SWL for urinary stones. Materials and Methods We searched the Cochrane Renal Group’s Specialised Register, MEDLINE, EMBASE and also hand-searched reference lists of relevant articles (Figure-1). Randomised controlled trials (RCT’s) comparing the use of any opioid, simple analgesic or NSAID during SWL were included. These were compared with themselves, each-other or placebo. We included any route or form of administration (bolus, PCA). We excluded agents that were used for their sedative qualities. Data were extracted and assessed for quality independently by three reviewers. Meta-analyses have been performed where possible. When not possible, descriptive analyses of variables were performed. Dichotomous outcomes are reported as relative risk (RR) and measurements on continuous scales are reported as weighted mean differences (WMD) with 95% confidence intervals. Results Overall, we included 9 RCTs (539 participants from 6 countries). Trial agents included 7 types of NSAIDs, 1 simple analgesic and 4 types of opioids. There were no significant differences in clinical efficacy or tolerability between a simple analgesic (paracetamol) and an NSAID (lornoxicam). When comparing the same simple analgesic with an opioid (tramadol), both agents provided safe and effective analgesia for the purpose of SWL with no significant differences. There were no significant differences in pain scores between NSAIDs or opioids in three studies. Adequate analgesia could be achieved more often for opioids than for NSAIDs (RR 0.358; 95% CI 043 to 0.77, P=0.0002) but consumed doses of rescue analgesia were similar between NSAIDs and opioids in two studies (P=0.58, >0.05). In terms of tolerability, there is no difference in post-operative nausea and vomiting (PONV) between the groups (RR 0.72, 95% CI 0.24 to 2.17, P=0.55). One study compared outcomes between two types of NSAIDs (diclofenac versus dexketoprofen). There were no significant differences in any of our pre-defined outcomes measures. Conclusion Simple analgesics, NSAIDs and opioids can all reduce the pain associated with shock wave lithotripsy to a level where the procedure is tolerated. Whilst there are no compelling differences in safety or efficacy of simple analgesics and NSAIDs, analgesia is described as adequate more often for opioids than NSAIDs.


Asunto(s)
Humanos , Litotricia/efectos adversos , Cálculos Urinarios/cirugía , Analgesia/métodos , Analgésicos/administración & dosificación , Analgésicos Opioides/administración & dosificación , Dolor Postoperatorio/tratamiento farmacológico , Analgésicos/clasificación
14.
Int Braz J Urol ; 43(3): 394-406, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28338301

RESUMEN

BACKGROUND: Shock wave lithotripsy (SWL) is the first line treatment modality for a significant proportion of patients with upper urinary tracts stones. Simple analgesics, opioids and non-steroidal anti-inflammatory drugs (NSAIDs) are all suitable agents but the relative efficacy and tolerability of these agents is uncertain. OBJECTIVES: To determine the efficacy of the different types of analgesics used for the control of pain during SWL for urinary stones. MATERIALS AND METHODS: We searched the Cochrane Renal Group's Specialised Register, MEDLINE, EMBASE and also hand-searched reference lists of relevant articles (Figure-1). Randomised controlled trials (RCT's) comparing the use of any opioid, simple analgesic or NSAID during SWL were included. These were compared with themselves, each-other or placebo. We included any route or form of administration (bolus, PCA). We excluded agents that were used for their sedative qualities. Data were extracted and assessed for quality independently by three reviewers. Meta-analyses have been performed where possible. When not possible, descriptive analyses of variables were performed. Dichotomous outcomes are reported as relative risk (RR) and measurements on continuous scales are reported as weighted mean differences (WMD) with 95% confidence intervals. RESULTS: Overall, we included 9 RCTs (539 participants from 6 countries). Trial agents included 7 types of NSAIDs, 1 simple analgesic and 4 types of opioids. There were no significant differences in clinical efficacy or tolerability between a simple analgesic (paracetamol) and an NSAID (lornoxicam). When comparing the same simple analgesic with an opioid (tramadol), both agents provided safe and effective analgesia for the purpose of SWL with no significant differences. There were no significant differences in pain scores between NSAIDs or opioids in three studies. Adequate analgesia could be achieved more often for opioids than for NSAIDs (RR 0.358; 95% CI 043 to 0.77, P=0.0002) but consumed doses of rescue analgesia were similar between NSAIDs and opioids in two studies (P=0.58, >0.05). In terms of tolerability, there is no difference in post-operative nausea and vomiting (PONV) between the groups (RR 0.72, 95% CI 0.24 to 2.17, P=0.55). One study compared outcomes between two types of NSAIDs (diclofenac versus dexketoprofen). There were no significant differences in any of our pre-defined outcomes measures. CONCLUSION: Simple analgesics, NSAIDs and opioids can all reduce the pain associated with shock wave lithotripsy to a level where the procedure is tolerated. Whilst there are no compelling differences in safety or efficacy of simple analgesics and NSAIDs, analgesia is described as adequate more often for opioids than NSAIDs.


Asunto(s)
Analgesia/métodos , Analgésicos Opioides/administración & dosificación , Analgésicos/administración & dosificación , Litotricia/efectos adversos , Cálculos Urinarios/cirugía , Analgésicos/clasificación , Humanos , Dolor Postoperatorio/tratamiento farmacológico
15.
Methods ; 115: 9-16, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27840289

RESUMEN

Podosomes are adhesive structures formed on the plasma membrane abutting the extracellular matrix of macrophages, osteoclasts, and dendritic cells. They consist of an f-actin core and a ring structure composed of integrins and integrin-associated proteins. The podosome ring plays a major role in adhesion to the underlying extracellular matrix, but its detailed structure is poorly understood. Recently, it has become possible to study the nano-scale structure of podosome rings using localization microscopy. Unlike traditional microscopy images, localization microscopy images are reconstructed using discrete points, meaning that standard image analysis methods cannot be applied. Here, we present a pipeline for podosome identification, protein position calculation, and creating a podosome ring model for use with localization microscopy data.


Asunto(s)
Citoesqueleto de Actina/ultraestructura , Matriz Extracelular/ultraestructura , Macrófagos/ultraestructura , Microscopía Fluorescente/métodos , Podosomas/ultraestructura , Citoesqueleto de Actina/metabolismo , Carbocianinas/química , Movimiento Celular , Células Cultivadas , Células Dendríticas/metabolismo , Células Dendríticas/ultraestructura , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Colorantes Fluorescentes/química , Expresión Génica , Genes Reporteros , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Macrófagos/metabolismo , Osteoclastos/metabolismo , Osteoclastos/ultraestructura , Paxillin/genética , Paxillin/metabolismo , Podosomas/metabolismo , Coloración y Etiquetado/métodos , Talina/genética , Talina/metabolismo , Vinculina/genética , Vinculina/metabolismo , Proteína Fluorescente Roja
16.
J Cell Biol ; 216(1): 181-197, 2017 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-28007915

RESUMEN

Podosomes represent a class of integrin-mediated cell-matrix adhesions formed by migrating and matrix-degrading cells. We demonstrate that in macrophage-like THP1 cells and fibroblasts stimulated to produce podosomes, down-regulation of the G-protein ARF1 or the ARF1 guanine nucleotide exchange factor, ARNO, by small, interfering RNA or pharmacological inhibitors led to striking podosome elimination. Concomitantly, treatments inducing podosome formation increased the level of guanosine triphosphate (GTP)-bound ARF1. ARNO was found to colocalize with the adhesive rings of podosomes, whereas ARF1 was localized to vesicular structures transiently contacting podosome rings. Inhibition of ARF1 led to an increase in RhoA-GTP levels and triggered assembly of myosin-IIA filaments in THP1 cells, whereas the suppression of myosin-IIA rescued podosome formation regardless of ARF1 inhibition. Finally, expression of constitutively active ARF1 in fibroblasts induced formation of putative podosome precursors: actin-rich puncta coinciding with matrix degradation sites and containing proteins of the podosome core but not of the adhesive ring. Thus, ARNO-ARF1 regulates formation of podosomes by inhibition of RhoA/myosin-II and promotion of actin core assembly.


Asunto(s)
Factor 1 de Ribosilacion-ADP/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Podosomas/enzimología , Factor 1 de Ribosilacion-ADP/antagonistas & inhibidores , Factor 1 de Ribosilacion-ADP/genética , Citoesqueleto de Actina/enzimología , Actinas/metabolismo , Animales , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Proteínas Activadoras de GTPasa/genética , Guanosina Trifosfato/metabolismo , Humanos , Ratones , Microscopía Fluorescente , Miosina Tipo IIA no Muscular/metabolismo , Podosomas/efectos de los fármacos , Interferencia de ARN , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Factores de Tiempo , Transfección , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
17.
Eur J Cell Biol ; 95(11): 483-492, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27465307

RESUMEN

Invadosomes are actin rich protrusive structures that facilitate invasive migration in multiple cell types. Comprised of invadopodia and podosomes, these highly dynamic structures adhere to and degrade the extracellular matrix, and are also thought to play a role in mechanosensing. Many extracellular signals have been implicated in invadosome stimulation, activating complex signalling cascades to drive the formation, activity and turnover of invadosomes. While the structural components of invadosomes have been well studied, the regulation of invadosome dynamics is still poorly understood. Protein kinases are essential to this regulation, affecting all stages of invadosome dynamics and allowing tight spatiotemporal control of their activity. Invadosome organisation and function have been linked to pathophysiological states such as cancer invasion and metastasis; therapeutic targeting of invadosome regulatory components is thus warranted. In this review, we discuss the involvement of kinase signalling in every stage of the invadosome life cycle and evaluate its significance.


Asunto(s)
Matriz Extracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Podosomas/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal , Animales , Adhesión Celular , Matriz Extracelular/patología , Humanos , Invasividad Neoplásica , Neoplasias/patología , Podosomas/patología
18.
Sci Rep ; 6: 24925, 2016 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-27116935

RESUMEN

During their metastatic spread, cancer cells need to remodel the extracellular matrix in order to migrate through stromal compartments adjacent to the primary tumor. Dissemination of breast carcinoma cells is mediated by membrane type 1-matrix metalloproteinase (MT1-MMP/MMP14), the main invadopodial matrix degradative component. Here, we identify MT1-MMP as a novel interacting partner of dual-specificity LIM Kinase-1 and -2 (LIMK1/2), and provide several evidence for phosphorylation of tyrosine Y573 in the cytoplasmic domain of MT1-MMP by LIMK. Phosphorylation of Y573 influences association of F-actin binding protein cortactin to MT1-MMP-positive endosomes and invadopodia formation and matrix degradation. Moreover, we show that LIMK1 regulates cortactin association to MT1-MMP-positive endosomes, while LIMK2 controls invadopodia-associated cortactin. In turn, LIMK1 and LIMK2 are required for MT1-MMP-dependent matrix degradation and cell invasion in a three-dimensional type I collagen environment. This novel link between LIMK1/2 and MT1-MMP may have important consequences for therapeutic control of breast cancer cell invasion.


Asunto(s)
Movimiento Celular , Quinasas Lim/metabolismo , Metaloproteinasa 14 de la Matriz/metabolismo , Procesamiento Proteico-Postraduccional , Tirosina/metabolismo , Línea Celular Tumoral , Cortactina/metabolismo , Humanos , Fosforilación , Unión Proteica , Mapeo de Interacción de Proteínas
19.
Nat Commun ; 6: 8672, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26507506

RESUMEN

The turnover of integrin receptors is critical for cell migration and adhesion dynamics. Here we find that force development at integrins regulates adaptor protein recruitment and endocytosis. Using mobile RGD (Arg-Gly-Asp) ligands on supported lipid membranes (RGD membranes) and rigid RGD ligands on glass (RGD-glass), we find that matrix force-dependent integrin signals block endocytosis. Dab2, an adaptor protein of clathrin-mediated endocytosis, is not recruited to activated integrin-beta3 clusters on RGD-glass; however, it is recruited to integrin-mediated adhesions on RGD membranes. Further, when force generation is inhibited on RGD-glass, Dab2 binds to integrin-beta3 clusters. Dab2 binding to integrin-beta3 excludes other adhesion-related adaptor proteins, such as talin. The clathrin-mediated endocytic machinery combines with Dab2 to facilitate the endocytosis of RGD-integrin-beta3 clusters. From these observations, we propose that loss of traction force on ligand-bound integrin-beta3 causes recruitment of Dab2/clathrin, resulting in endocytosis of integrins.


Asunto(s)
Células/química , Células/metabolismo , Clatrina/metabolismo , Endocitosis , Integrina beta3/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis , Fenómenos Biomecánicos , Movimiento Celular , Células/citología , Clatrina/genética , Células HeLa , Humanos , Integrina beta3/genética , Ratones , Unión Proteica , Tracción
20.
J Cell Sci ; 128(2): 251-65, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25413351

RESUMEN

Podosomes are integrin-containing adhesion structures commonly found in migrating leukocytes of the monocytic lineage. The actin cytoskeletal organisation of podosomes is based on a WASP- and Arp2/3-mediated mechanism. WASP also associates with a second protein, WIP (also known as WIPF1), and they co-localise in podosome cores. Here, we report for the first time that WIP can be phosphorylated on tyrosine residues and that tyrosine phosphorylation of WIP is a trigger for release of WASP from the WIP-WASP complex. Using a knockdown approach together with expression of WIP phosphomimics, we show that in the absence of WIP-WASP binding, cellular WASP is rapidly degraded, leading to disruption of podosomes and a failure of cells to degrade an underlying matrix. In the absence of tyrosine phosphorylation, the WIP-WASP complex remains intact and podosome lifetimes are extended. A screen of candidate kinases and inhibitor-based assays identified Bruton's tyrosine kinase (Btk) as a regulator of WIP tyrosine phosphorylation. We conclude that tyrosine phosphorylation of WIP is a crucial regulator of WASP stability and function as an actin-nucleation-promoting factor.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Matriz Extracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Agammaglobulinemia Tirosina Quinasa , Animales , Proteínas del Citoesqueleto/genética , Matriz Extracelular/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Macrófagos/metabolismo , Fosforilación/genética , Podosomas/metabolismo , Unión Proteica , Proteínas Tirosina Quinasas/genética , Tirosina/metabolismo , Proteína del Síndrome de Wiskott-Aldrich/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...