Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Proteomics ; 228: 103921, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32758705

RESUMEN

Characterization of MHC-bound peptides by mass spectrometry (MS) is an essential technique for immunologic studies. Many efforts have been made to quantify the number of MHC-presented ligands by MS and to define the limits of detection of a specific MHC ligand. However, these experiments are often complex and comparisons across different laboratories are challenging. Therefore, we compared and orthogonally validated quantitation of peptide:MHC complexes by radioimmunoassay and flow cytometry using TCR mimic antibodies in three model systems to establish a method to control the experimental input of peptide MHC:complexes for MS analysis. Following isolation of MHC-bound peptides we identified and quantified an MHC ligand of interest with high correlation to the initial input. We found that the diversity of the presented ligandome, as well as the peptide sequence itself affected the detection of the target peptide. Furthermore, results were applicable from these model systems to unmodified cell lines with a tight correlation between HLA-A*02 complex input and the number of identified HLA-A*02 ligands. Overall, this framework provides an easily accessible experimental setup that offers the opportunity to control the peptide:MHC input and in this way compare immunopeptidome experiments not only within but also between laboratories, independent of their experimental approach. SIGNIFICANCE: Although immunopeptidomics is an essential tool for the characterization of MHCbound peptides on the cell surface, there are no easily applicable established protocols available that allow comparison of immunopeptidome experiments across laboratories. Here, we demonstrate that controlling the peptide:MHC input for immunopurification and LC-MS/MS experiments by flow cytometry in pre-defined model systems allows the generation of qualitative and quantitative data that can easily be compared between investigators, independently of their methods for MHC ligand isolation for MS.


Asunto(s)
Laboratorios , Espectrometría de Masas en Tándem , Cromatografía Liquida , Ligandos , Péptidos
2.
Cancer Immunol Res ; 8(5): 672-684, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32184297

RESUMEN

T-cell receptor (TCR)-based therapeutic cells and agents have emerged as a new class of effective cancer therapies. These therapies work on cells that express intracellular cancer-associated proteins by targeting peptides displayed on MHC receptors. However, cross-reactivities of these agents to off-target cells and tissues have resulted in serious, sometimes fatal, adverse events. We have developed a high-throughput genetic platform (termed "PresentER") that encodes MHC-I peptide minigenes for functional immunologic assays and determines the reactivities of TCR-like therapeutic agents against large libraries of MHC-I ligands. In this article, we demonstrated that PresentER could be used to identify the on-and-off targets of T cells and TCR-mimic (TCRm) antibodies using in vitro coculture assays or binding assays. We found dozens of MHC-I ligands that were cross-reactive with two TCRm antibodies and two native TCRs and that were not easily predictable by other methods.


Asunto(s)
Reacciones Cruzadas/inmunología , Ensayos Analíticos de Alto Rendimiento/métodos , Antígenos de Histocompatibilidad Clase I/genética , Complejo Mayor de Histocompatibilidad/inmunología , Neoplasias/inmunología , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T/inmunología , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Ratones , Ratones Endogámicos C57BL , Neoplasias/genética , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T/inmunología
3.
Front Immunol ; 11: 585385, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33569049

RESUMEN

The use of T cells reactive with intracellular tumor-associated or tumor-specific antigens has been a promising strategy for cancer immunotherapies in the past three decades, but the approach has been constrained by a limited understanding of the T cell receptor's (TCR) complex functions and specificities. Newer TCR and T cell-based approaches are in development, including engineered adoptive T cells with enhanced TCR affinities, TCR mimic antibodies, and T cell-redirecting bispecific agents. These new therapeutic modalities are exciting opportunities by which TCR recognition can be further exploited for therapeutic benefit. In this review we summarize the development of TCR-based therapeutic strategies and focus on balancing efficacy and potency versus specificity, and hence, possible toxicity, of these powerful therapeutic modalities.


Asunto(s)
Inmunoterapia , Receptores de Antígenos de Linfocitos T/inmunología , Animales , Humanos
4.
Elife ; 72018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30499773

RESUMEN

Tumors often co-exist with T cells that recognize somatically mutated peptides presented by cancer cells on major histocompatibility complex I (MHC-I). However, it is unknown why the immune system fails to eliminate immune-recognizable neoplasms before they manifest as frank disease. To understand the determinants of MHC-I peptide immunogenicity in nascent tumors, we tested the ability of thousands of MHC-I ligands to cause tumor subclone rejection in immunocompetent mice by use of a new 'PresentER' antigen presentation platform. Surprisingly, we show that immunogenic tumor antigens do not lead to immune-mediated cell rejection when the fraction of cells bearing each antigen ('clonal fraction') is low. Moreover, the clonal fraction necessary to lead to rejection of immunogenic tumor subclones depends on the antigen. These data indicate that tumor neoantigen heterogeneity has an underappreciated impact on immune elimination of cancer cells and has implications for the design of immunotherapeutics such as cancer vaccines.


Asunto(s)
Células Clonales/patología , Neoplasias/inmunología , Neoplasias/patología , Animales , Presentación de Antígeno/inmunología , Antígenos de Neoplasias/inmunología , Secuencia de Bases , Efecto Espectador , Línea Celular Tumoral , Citotoxicidad Inmunológica , Biblioteca de Genes , Inmunocompetencia , Complejo Mayor de Histocompatibilidad/inmunología , Ratones Endogámicos C57BL , Péptidos/inmunología , Receptores de Cinasa C Activada/inmunología , Linfocitos T/inmunología , Vacunación
5.
Org Lett ; 19(1): 142-145, 2017 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-27959567

RESUMEN

To develop next generation antifolates for the treatment of trimethoprim-resistant bacteria, synthetic methods were needed to prepare a diverse array of 3-aryl-propynes with various substitutions at the propargyl position. A direct route was sought whereby nucleophilic addition of acetylene to aryl carboxaldehydes would be followed by reduction or substitution of the resulting propargyl alcohol. The direct reduction, methylation, and dimethylation of these readily available alcohols provide efficient access to this uncommon functional array. In addition, an unusual silane exchange reaction was observed in the reduction of the propargylic alcohols.


Asunto(s)
Alcoholes/síntesis química , Alquinos/química , Antibacterianos/química , Antagonistas del Ácido Fólico/química , Aldehídos/química , Alquinos/síntesis química , Antibacterianos/síntesis química , Diseño de Fármacos , Farmacorresistencia Bacteriana , Antagonistas del Ácido Fólico/síntesis química , Antagonistas del Ácido Fólico/farmacología , Humanos , Metilación , Estructura Molecular , Oxidación-Reducción , Estereoisomerismo , Relación Estructura-Actividad , Trimetoprim/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA