Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38712210

RESUMEN

APOBEC3B cytosine deaminase contributes to the mutational burdens of tumors, resulting in tumor progression and therapy resistance. Small molecule APOBEC3B inhibitors have potential to slow or mitigate these detrimental outcomes. Through molecular dynamics (MD) simulations and computational solvent mapping analysis, we identified a novel putative allosteric pocket on the C-terminal domain of APOBEC3B (A3Bctd), and virtually screened the ChemBridge Diversity Set (N~110,000) against both the active and potential allosteric sites. Selected high-scoring compounds were subsequently purchased, characterized for purity and composition, and tested in biochemical assays, which yielded 13 hit compounds. Orthogonal NMR assays verified binding to the target protein. Initial selectivity studies suggest these compounds preferentially target A3Bctd over related deaminase APOBEC3A (A3A), and MD simulations indicate this selectivity may be due to the steric repulsion from H56 that is unique to A3A. Taken together, our studies represent the first virtual screening effort against A3Bctd that has yielded candidate inhibitors suitable for further development.

2.
ACS Med Chem Lett ; 14(3): 338-343, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36923917

RESUMEN

APOBEC3A (A3A)-catalyzed DNA cytosine deamination is implicated in virus and cancer mutagenesis, and A3A is a target for small molecule drug discovery. The catalytic glutamic acid (E72) is frequently mutated in biochemical studies to characterize deamination-dependent versus deamination-independent A3A functions. Additionally, catalytically active A3A is toxic in bacterial expression systems, which adversely affects yield during recombinant A3A expression. Here, we demonstrate that mutating the catalytic glutamic acid to an isosteric glutamine (E72Q) significantly decreases the thermal stability of the protein, compared to the alanine-inactivating mutation (E72A). Differential scanning fluorimetry and mass spectrometry reveal that A3A E72Q is less thermally stable than A3A E72A or wild-type A3A. Strikingly, A3A E72Q is partially denatured at 37 °C and binds single-stranded DNA with significantly poorer affinity compared to A3A E72A. This study constitutes an important cautionary note on A3A protein design and informs that A3A E72A is the preferred catalytic inactivation mutation for most applications.

3.
Trends Pharmacol Sci ; 43(5): 362-377, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35272863

RESUMEN

Mutational processes driving genome evolution and heterogeneity contribute to immune evasion and therapy resistance in viral infections and cancer. APOBEC3 (A3) enzymes promote such mutations by catalyzing the deamination of cytosines to uracils in single-stranded DNA. Chemical inhibition of A3 enzymes may yield an antimutation therapeutic strategy to improve the durability of current drug therapies that are prone to resistance mutations. A3 small-molecule drug discovery efforts to date have been restricted to a single high-throughput biochemical activity assay; however, the arsenal of discovery assays has significantly expanded in recent years. The assays used to study A3 enzymes are reviewed here with an eye towards their potential for small-molecule discovery efforts.


Asunto(s)
Citidina Desaminasa , Descubrimiento de Drogas , Citidina Desaminasa/genética , Humanos , Mutación
4.
Chemistry ; 27(17): 5564-5571, 2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33502811

RESUMEN

Described herein is a function-oriented synthesis route and biological evaluation of pseudoguaianolide analogues. The 10-step synthetic route developed retains the topological complexity of the natural product, installs functional handles for late-stage diversification, and forges the key bioactive Michael acceptors early in the synthesis. The analogues were found to be low-micromolar Nrf2 activators and micromolar NF-κB inhibitors and dependent on the local environment of the Michael acceptor moieties.


Asunto(s)
Productos Biológicos , Factor 2 Relacionado con NF-E2 , FN-kappa B
5.
J Med Chem ; 63(23): 14951-14978, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33201697

RESUMEN

α-Methylene-γ-lactones are present in ∼3% of known natural products, and compounds comprising this motif display a range of biological activities. However, this reactive lactone limits informed structure-activity relationships for these bioactive molecules. Herein, we describe chemically tuning the electrophilicity of the α-methylene-γ-lactone by replacement with an α-methylene-γ-lactam. Guaianolide analogues having α-methylene-γ-lactams are synthesized using the allenic Pauson-Khand reaction. Substitution of the lactam nitrogen with electronically different groups affords diverse thiol reactivity. Cellular NF-κB inhibition assays for these lactams were benchmarked against parthenolide and a synthetic α-methylene-γ-lactone showing a positive correlation between thiol reactivity and bioactivity. Cytotoxicity assays show good correlation at the outer limits of thiol reactivity but less so for compounds with intermediate reactivity. A La assay to detect reactive molecules by nuclear magnetic resonance and mass spectrometry peptide sequencing assays with the La antigen protein demonstrate that lactam analogues with muted nonspecific thiol reactivities constitute a better electrophile for rational chemical probe and therapeutic molecule design.


Asunto(s)
Cisteamina/química , Lactamas/farmacología , Sesquiterpenos de Guayano/farmacología , Células A549 , Animales , Chlorocebus aethiops , Células HEK293 , Humanos , Lactamas/síntesis química , Lactamas/toxicidad , FN-kappa B/metabolismo , Prueba de Estudio Conceptual , Sesquiterpenos de Guayano/síntesis química , Sesquiterpenos de Guayano/toxicidad , Transducción de Señal/efectos de los fármacos , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...