Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Cancer ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637658

RESUMEN

Tailoring optimal treatment for individual cancer patients remains a significant challenge. To address this issue, we developed PERCEPTION (PERsonalized Single-Cell Expression-Based Planning for Treatments In ONcology), a precision oncology computational pipeline. Our approach uses publicly available matched bulk and single-cell (sc) expression profiles from large-scale cell-line drug screens. These profiles help build treatment response models based on patients' sc-tumor transcriptomics. PERCEPTION demonstrates success in predicting responses to targeted therapies in cultured and patient-tumor-derived primary cells, as well as in two clinical trials for multiple myeloma and breast cancer. It also captures the resistance development in patients with lung cancer treated with tyrosine kinase inhibitors. PERCEPTION outperforms published state-of-the-art sc-based and bulk-based predictors in all clinical cohorts. PERCEPTION is accessible at https://github.com/ruppinlab/PERCEPTION . Our work, showcasing patient stratification using sc-expression profiles of their tumors, will encourage the adoption of sc-omics profiling in clinical settings, enhancing precision oncology tools based on sc-omics.

2.
bioRxiv ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38405779

RESUMEN

Extrachromosomal DNA (ecDNA) is a central mechanism for focal oncogene amplification in cancer, occurring in approximately 15% of early stage cancers and 30% of late-stage cancers. EcDNAs drive tumor formation, evolution, and drug resistance by dynamically modulating oncogene copy-number and rewiring gene-regulatory networks. Elucidating the genomic architecture of ecDNA amplifications is critical for understanding tumor pathology and developing more effective therapies. Paired-end short-read (Illumina) sequencing and mapping have been utilized to represent ecDNA amplifications using a breakpoint graph, where the inferred architecture of ecDNA is encoded as a cycle in the graph. Traversals of breakpoint graph have been used to successfully predict ecDNA presence in cancer samples. However, short-read technologies are intrinsically limited in the identification of breakpoints, phasing together of complex rearrangements and internal duplications, and deconvolution of cell-to-cell heterogeneity of ecDNA structures. Long-read technologies, such as from Oxford Nanopore Technologies, have the potential to improve inference as the longer reads are better at mapping structural variants and are more likely to span rearranged or duplicated regions. Here, we propose CoRAL (Complete Reconstruction of Amplifications with Long reads), for reconstructing ecDNA architectures using long-read data. CoRAL reconstructs likely cyclic architectures using quadratic programming that simultaneously optimizes parsimony of reconstruction, explained copy number, and consistency of long-read mapping. CoRAL substantially improves reconstructions in extensive simulations and 9 datasets from previously-characterized cell-lines as compared to previous short-read-based tools. As long-read usage becomes wide-spread, we anticipate that CoRAL will be a valuable tool for profiling the landscape and evolution of focal amplifications in tumors.

3.
Nature ; 627(8003): 389-398, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38253266

RESUMEN

The human blood system is maintained through the differentiation and massive amplification of a limited number of long-lived haematopoietic stem cells (HSCs)1. Perturbations to this process underlie diverse diseases, but the clonal contributions to human haematopoiesis and how this changes with age remain incompletely understood. Although recent insights have emerged from barcoding studies in model systems2-5, simultaneous detection of cell states and phylogenies from natural barcodes in humans remains challenging. Here we introduce an improved, single-cell lineage-tracing system based on deep detection of naturally occurring mitochondrial DNA mutations with simultaneous readout of transcriptional states and chromatin accessibility. We use this system to define the clonal architecture of HSCs and map the physiological state and output of clones. We uncover functional heterogeneity in HSC clones, which is stable over months and manifests as both differences in total HSC output and biases towards the production of different mature cell types. We also find that the diversity of HSC clones decreases markedly with age, leading to an oligoclonal structure with multiple distinct clonal expansions. Our study thus provides a clonally resolved and cell-state-aware atlas of human haematopoiesis at single-cell resolution, showing an unappreciated functional diversity of human HSC clones and, more broadly, paving the way for refined studies of clonal dynamics across a range of tissues in human health and disease.


Asunto(s)
Linaje de la Célula , Hematopoyesis , Células Madre Hematopoyéticas , Humanos , Cromatina/genética , Cromatina/metabolismo , Células Clonales/clasificación , Células Clonales/citología , Células Clonales/metabolismo , ADN Mitocondrial/genética , Células Madre Hematopoyéticas/clasificación , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Mutación , Análisis de la Célula Individual , Transcripción Genética , Envejecimiento
4.
bioRxiv ; 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37961138

RESUMEN

Oncogene amplification on extrachromosomal DNA (ecDNA) is a pervasive driver event in cancer, yet our understanding of how ecDNA forms is limited. Here, we couple a CRISPR-based method for induction of ecDNA with extensive characterization of newly formed ecDNA to examine ecDNA biogenesis. We find that DNA circularization is efficient, irrespective of 3D genome context, with formation of a 1 Mb and 1.8 Mb ecDNA both reaching 15%. We show non-homologous end joining and microhomology mediated end joining both contribute to ecDNA formation, while inhibition of DNA-PKcs and ATM have opposing impacts on ecDNA formation. EcDNA and the corresponding chromosomal excision scar form at significantly different rates and respond differently to DNA-PKcs and ATM inhibition. Taken together, our results support a model of ecDNA formation in which double strand break ends dissociate from their legitimate ligation partners prior to joining of illegitimate ends to form the ecDNA and excision scar.

5.
bioRxiv ; 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37503111

RESUMEN

The chromosomal theory of inheritance has dominated human genetics, including cancer genetics. Genes on the same chromosome segregate together while genes on different chromosomes assort independently, providing a fundamental tenet of Mendelian inheritance. Extrachromosomal DNA (ecDNA) is a frequent event in cancer that drives oncogene amplification, dysregulated gene expression and intratumoral heterogeneity, including through random segregation during cell division. Distinct ecDNA sequences, herein termed ecDNA species, can co-exist to facilitate intermolecular cooperation in cancer cells. However, how multiple ecDNA species within a tumor cell are assorted and maintained across somatic cell generations to drive cancer cell evolution is not known. Here we show that cooperative ecDNA species can be coordinately inherited through mitotic co-segregation. Imaging and single-cell analyses show that multiple ecDNAs encoding distinct oncogenes co-occur and are correlated in copy number in human cancer cells. EcDNA species are coordinately segregated asymmetrically during mitosis, resulting in daughter cells with simultaneous copy number gains in multiple ecDNA species prior to any selection. Computational modeling reveals the quantitative principles of ecDNA co-segregation and co-selection, predicting their observed distributions in cancer cells. Finally, we show that coordinated inheritance of ecDNAs enables co-amplification of specialized ecDNAs containing only enhancer elements and guides therapeutic strategies to jointly deplete cooperating ecDNA oncogenes. Coordinated inheritance of ecDNAs confers stability to oncogene cooperation and novel gene regulatory circuits, allowing winning combinations of epigenetic states to be transmitted across cell generations.

6.
Cell Rep Methods ; 2(4): 100200, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35497495

RESUMEN

Recent advances in CRISPR-Cas9 engineering and single-cell assays have enabled the simultaneous measurement of single-cell transcriptomic and phylogenetic profiles. However, there are few computational tools enabling users to integrate and derive insight from a joint analysis of these two modalities. Here, we describe "PhyloVision": an open-source software for interactively exploring data from both modalities and for identifying and interpreting heritable gene modules whose concerted expression are associated with phylogenetic relationships. PhyloVision provides a feature-rich, interactive, and shareable web-based report for investigating these modules while also supporting several other data and meta-data exploration capabilities. We demonstrate the utility of PhyloVision using a published dataset of metastatic lung adenocarcinoma cells, whose phylogeny was resolved using a CRISPR-Cas9-based lineage-tracing system. Together, we anticipate that PhyloVision and the methods it implements will be a useful resource for scalable and intuitive data exploration for any assay that simultaneously measures cell state and lineage.


Asunto(s)
Biología Computacional , Transcriptoma , Transcriptoma/genética , Filogenia , Biología Computacional/métodos , Programas Informáticos , Perfilación de la Expresión Génica
7.
Cell ; 185(11): 1905-1923.e25, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35523183

RESUMEN

Tumor evolution is driven by the progressive acquisition of genetic and epigenetic alterations that enable uncontrolled growth and expansion to neighboring and distal tissues. The study of phylogenetic relationships between cancer cells provides key insights into these processes. Here, we introduced an evolving lineage-tracing system with a single-cell RNA-seq readout into a mouse model of Kras;Trp53(KP)-driven lung adenocarcinoma and tracked tumor evolution from single-transformed cells to metastatic tumors at unprecedented resolution. We found that the loss of the initial, stable alveolar-type2-like state was accompanied by a transient increase in plasticity. This was followed by the adoption of distinct transcriptional programs that enable rapid expansion and, ultimately, clonal sweep of stable subclones capable of metastasizing. Finally, tumors develop through stereotypical evolutionary trajectories, and perturbing additional tumor suppressors accelerates progression by creating novel trajectories. Our study elucidates the hierarchical nature of tumor evolution and, more broadly, enables in-depth studies of tumor progression.


Asunto(s)
Neoplasias , Animales , Genes ras , Ratones , Neoplasias/genética , Filogenia , Secuenciación del Exoma
8.
Cell Syst ; 12(8): 810-826.e4, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34146472

RESUMEN

The recent advent of CRISPR and other molecular tools enabled the reconstruction of cell lineages based on induced DNA mutations and promises to solve the ones of more complex organisms. To date, no lineage reconstruction algorithms have been rigorously examined for their performance and robustness across dataset types and number of cells. To benchmark such methods, we decided to organize a DREAM challenge using in vitro experimental intMEMOIR recordings and in silico data for a C. elegans lineage tree of about 1,000 cells and a Mus musculus tree of 10,000 cells. Some of the 22 approaches submitted had excellent performance, but structural features of the trees prevented optimal reconstructions. Using smaller sub-trees as training sets proved to be a good approach for tuning algorithms to reconstruct larger trees. The simulation and reconstruction methods here generated delineate a potential way forward for solving larger cell lineage trees such as in mouse.


Asunto(s)
Benchmarking , Caenorhabditis elegans , Algoritmos , Animales , Caenorhabditis elegans/genética , Linaje de la Célula/genética , Simulación por Computador , Ratones
9.
Science ; 371(6532)2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33479121

RESUMEN

Detailed phylogenies of tumor populations can recount the history and chronology of critical events during cancer progression, such as metastatic dissemination. We applied a Cas9-based, single-cell lineage tracer to study the rates, routes, and drivers of metastasis in a lung cancer xenograft mouse model. We report deeply resolved phylogenies for tens of thousands of cancer cells traced over months of growth and dissemination. This revealed stark heterogeneity in metastatic capacity, arising from preexisting and heritable differences in gene expression. We demonstrate that these identified genes can drive invasiveness and uncovered an unanticipated suppressive role for KRT17 We also show that metastases disseminated via multidirectional tissue routes and complex seeding topologies. Overall, we demonstrate the power of tracing cancer progression at subclonal resolution and vast scale.


Asunto(s)
Neoplasias Pulmonares/patología , Metástasis de la Neoplasia , Animales , Sistemas CRISPR-Cas , Línea Celular Tumoral , Linaje de la Célula , Células Clonales , Regulación Neoplásica de la Expresión Génica , Humanos , Queratina-17/genética , Neoplasias Pulmonares/genética , Ratones , Invasividad Neoplásica/genética , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Siembra Neoplásica , Trasplante de Neoplasias , Fenotipo , RNA-Seq , Análisis de la Célula Individual , Transcriptoma , Trasplante Heterólogo
10.
ACS Chem Biol ; 15(8): 2137-2153, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32786289

RESUMEN

Protein conformations are shaped by cellular environments, but how environmental changes alter the conformational landscapes of specific proteins in vivo remains largely uncharacterized, in part due to the challenge of probing protein structures in living cells. Here, we use deep mutational scanning to investigate how a toxic conformation of α-synuclein, a dynamic protein linked to Parkinson's disease, responds to perturbations of cellular proteostasis. In the context of a course for graduate students in the UCSF Integrative Program in Quantitative Biology, we screened a comprehensive library of α-synuclein missense mutants in yeast cells treated with a variety of small molecules that perturb cellular processes linked to α-synuclein biology and pathobiology. We found that the conformation of α-synuclein previously shown to drive yeast toxicity-an extended, membrane-bound helix-is largely unaffected by these chemical perturbations, underscoring the importance of this conformational state as a driver of cellular toxicity. On the other hand, the chemical perturbations have a significant effect on the ability of mutations to suppress α-synuclein toxicity. Moreover, we find that sequence determinants of α-synuclein toxicity are well described by a simple structural model of the membrane-bound helix. This model predicts that α-synuclein penetrates the membrane to constant depth across its length but that membrane affinity decreases toward the C terminus, which is consistent with orthogonal biophysical measurements. Finally, we discuss how parallelized chemical genetics experiments can provide a robust framework for inquiry-based graduate coursework.


Asunto(s)
Saccharomyces cerevisiae/efectos de los fármacos , alfa-Sinucleína/toxicidad , Secuencia de Aminoácidos , Humanos , Mutación , Enfermedad de Parkinson/metabolismo , Conformación Proteica , Saccharomyces cerevisiae/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/genética
11.
Genome Biol ; 21(1): 92, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32290857

RESUMEN

The pairing of CRISPR/Cas9-based gene editing with massively parallel single-cell readouts now enables large-scale lineage tracing. However, the rapid growth in complexity of data from these assays has outpaced our ability to accurately infer phylogenetic relationships. First, we introduce Cassiopeia-a suite of scalable maximum parsimony approaches for tree reconstruction. Second, we provide a simulation framework for evaluating algorithms and exploring lineage tracer design principles. Finally, we generate the most complex experimental lineage tracing dataset to date, 34,557 human cells continuously traced over 15 generations, and use it for benchmarking phylogenetic inference approaches. We show that Cassiopeia outperforms traditional methods by several metrics and under a wide variety of parameter regimes, and provide insight into the principles for the design of improved Cas9-enabled recorders. Together, these should broadly enable large-scale mammalian lineage tracing efforts. Cassiopeia and its benchmarking resources are publicly available at www.github.com/YosefLab/Cassiopeia.


Asunto(s)
Linaje de la Célula , Filogenia , Análisis de la Célula Individual , Algoritmos , Sistemas CRISPR-Cas , Humanos , Mutación
12.
Nat Commun ; 10(1): 4376, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31558714

RESUMEN

We present Vision, a tool for annotating the sources of variation in single cell RNA-seq data in an automated and scalable manner. Vision operates directly on the manifold of cell-cell similarity and employs a flexible annotation approach that can operate either with or without preconceived stratification of the cells into groups or along a continuum. We demonstrate the utility of Vision in several case studies and show that it can derive important sources of cellular variation and link them to experimental meta-data even with relatively homogeneous sets of cells. Vision produces an interactive, low latency and feature rich web-based report that can be easily shared among researchers, thus facilitating data dissemination and collaboration.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Humanos , Internet , Reproducibilidad de los Resultados
13.
Nature ; 570(7759): 77-82, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31086336

RESUMEN

Ontogeny describes the emergence of complex multicellular organisms from single totipotent cells. This field is particularly challenging in mammals, owing to the indeterminate relationship between self-renewal and differentiation, variation in progenitor field sizes, and internal gestation in these animals. Here we present a flexible, high-information, multi-channel molecular recorder with a single-cell readout and apply it as an evolving lineage tracer to assemble mouse cell-fate maps from fertilization through gastrulation. By combining lineage information with single-cell RNA sequencing profiles, we recapitulate canonical developmental relationships between different tissue types and reveal the nearly complete transcriptional convergence of endodermal cells of extra-embryonic and embryonic origins. Finally, we apply our cell-fate maps to estimate the number of embryonic progenitor cells and their degree of asymmetric partitioning during specification. Our approach enables massively parallel, high-resolution recording of lineage and other information in mammalian systems, which will facilitate the construction of a quantitative framework for understanding developmental processes.


Asunto(s)
Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Embrión de Mamíferos/citología , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Endodermo/embriología , Endodermo/metabolismo , Femenino , Fertilización , Gastrulación , Regulación del Desarrollo de la Expresión Génica/genética , Masculino , Ratones , Especificidad de Órganos/genética , Fenotipo , Análisis de Secuencia de ARN , Análisis de la Célula Individual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...