Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 260
Filtrar
1.
NMR Biomed ; : e5142, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38494895

RESUMEN

Integrating datasets from multiple sites and scanners can increase statistical power for neuroimaging studies but can also introduce significant inter-site confounds. We evaluated the effectiveness of ComBat, an empirical Bayes approach, to combine longitudinal preclinical MRI data acquired at 4.7 or 9.4 T at two different sites in Australia. Male Sprague Dawley rats underwent MRI on Days 2, 9, 28, and 150 following moderate/severe traumatic brain injury (TBI) or sham injury as part of Project 1 of the NIH/NINDS-funded Centre Without Walls EpiBioS4Rx project. Diffusion-weighted and multiple-gradient-echo images were acquired, and outcomes included QSM, FA, and ADC. Acute injury measures including apnea and self-righting reflex were consistent between sites. Mixed-effect analysis of ipsilateral and contralateral corpus callosum (CC) summary values revealed a significant effect of site on FA and ADC values, which was removed following ComBat harmonization. Bland-Altman plots for each metric showed reduced variability across sites following ComBat harmonization, including for QSM, despite appearing to be largely unaffected by inter-site differences and no effect of site observed. Following harmonization, the combined inter-site data revealed significant differences in the imaging metrics consistent with previously reported outcomes. TBI resulted in significantly reduced FA and increased susceptibility in the ipsilateral CC, and significantly reduced FA in the contralateral CC compared with sham-injured rats. Additionally, TBI rats also exhibited a reversal in ipsilateral CC ADC values over time with significantly reduced ADC at Day 9, followed by increased ADC 150 days after injury. Our findings demonstrate the need for harmonizing multi-site preclinical MRI data and show that this can be successfully achieved using ComBat while preserving phenotypical changes due to TBI.

2.
MycoKeys ; 101: 329-346, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38343718

RESUMEN

The genus Samsoniella was erected based on orange cylindrical to clavate stromata, superficial perithecia and conidiophores with Isaria-like phialides and to segregate them from the Akanthomyces group. In this study, based on morphological features and multigene (SSU, LSU, TEF, RPB1 and RPB2) phylogenetic analysis six Samsoniella species parasitizing spiders were collected in China. Three of them belong to known species S.alpina, S.erucae and S.hepiali. Three new species S.anhuiensissp. nov., S.araneasp. nov. and S.fusiformisporasp. nov. are illustrated and described. They are clearly distinct from other species in Samsoniella occurring in independent subclades. Furthermore, among the four insect-pathogenic fungi specimens collected from similar sites, three of them were identified as the new species described below. Our study significantly broadens the host range of Samsoniella from Insecta to Arachnida, marking a noteworthy expansion in understanding the ecological associations of these fungi. Additionally, the identification of both mononematous and synnematous conidiophores in our study not only expands the knowledge of Samsoniella species but also provides a basis for future research by comparing the ecological significance between these conidiophore types. In conclusion, our study enhances the understanding of Samsoniella diversity, presenting a refined phylogenetic framework and shedding light on the ecological roles of these fungi in spider parasitism.

3.
J Neurotrauma ; 41(1-2): 222-243, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-36950806

RESUMEN

Sodium selenate (SS) activates protein phosphatase 2 (PP2A) and reduces phosphorylated tau (pTAU) and late post-traumatic seizures after lateral fluid percussion injury (LFPI). In EpiBioS4Rx Project 2, a multi-center international study for post-traumatic targets, biomarkers, and treatments, we tested the target relevance and modification by SS of pTAU forms and PP2A and in the LFPI model, at two sites: Einstein and Melbourne. In Experiment 1, adult male rats were assigned to LFPI and sham (both sites) and naïve controls (Einstein). Motor function was monitored by neuroscores. Brains were studied with immunohistochemistry (IHC), Western blots (WBs), or PP2A activity assay, from 2 days to 8 weeks post-operatively. In Experiment 2, LFPI rats received SS for 7 days (SS0.33: 0.33 mg/kg/day; SS1: 1 mg/kg/day, subcutaneously) or vehicle (Veh) post-LFPI and pTAU, PR55 expression, or PP2A activity were studied at 2 days and 1 week (on treatment), or 2 weeks (1 week off treatment). Plasma selenium and SS levels were measured. In Experiment 1 IHC, LFPI rats had higher cortical pTAU-Ser202/Thr205-immunoreactivity (AT8-ir) and pTAU-Ser199/202-ir at 2 days, and pTAU-Thr231-ir (AT180-ir) at 2 days, 2 weeks, and 8 weeks, ipsilaterally to LFPI, than controls. LFPI-2d rats also had higher AT8/total-TAU5-ir in cortical extracts ipsilateral to the lesion (WB). PP2A (PR55-ir) showed time- and region-dependent changes in IHC, but not in WB. PP2A activity was lower in LFPI-1wk than in sham rats. In Experiment 2, SS did not affect neuroscores or cellular AT8-ir, AT180-ir, or PR55-ir in IHC. In WB, total cortical AT8/total-TAU-ir was lower in SS0.33 and SS1 LFPI rats than in Veh rats (2 days, 1 week); total cortical PR55-ir (WB) and PP2A activity were higher in SS1 than Veh rats (2 days). SS dose dependently increased plasma selenium and SS levels. Concordant across-sites data confirm time and pTAU form-specific cortical increases ipsilateral to LFPI. The discordant SS effects may either suggest SS-induced reduction in the numbers of cells with increased pTAU-ir, need for longer treatment, or the involvement of other mechanisms of action.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Selenio , Ratas , Masculino , Animales , Ácido Selénico/farmacología , Fosforilación , Proteínas tau/metabolismo , Corteza Cerebral/metabolismo
4.
J Neurosci Res ; 102(1): e25257, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37814998

RESUMEN

Noncompetitive NMDA receptor (NMDAR) antagonists like phencyclidine (PCP) and ketamine cause psychosis-like symptoms in healthy humans, exacerbate schizophrenia symptoms in people with the disorder, and disrupt a range of schizophrenia-relevant behaviors in rodents, including hyperlocomotion. This is negated in mice lacking the GluN2D subunit of the NMDAR, suggesting the GluN2D subunit mediates the hyperlocomotor effects of these drugs. However, the role of GluN2D in mediating other schizophrenia-relevant NMDAR antagonist-induced behavioral disturbances, and in both sexes, is unclear. This study aimed to investigate the role of the GluN2D subunit in mediating schizophrenia-relevant behaviors induced by a range of NMDA receptor antagonists. Using both male and female GluN2D knockout (KO) mice, we examined the effects of the NMDAR antagonist's PCP, the S-ketamine enantiomer (S-ket), and the ketamine metabolite R-norketamine (R-norket) on locomotor activity, anxiety-related behavior, and recognition and short-term spatial memory. GluN2D-KO mice showed a blunted locomotor response to R-norket, S-ket, and PCP, a phenotype present in both sexes. GluN2D-KO mice of both sexes showed an anxious phenotype and S-ket, R-norket, and PCP showed anxiolytic effects that were dependent on sex and genotype. S-ket disrupted spatial recognition memory in females and novel object recognition memory in both sexes, independent of genotype. This datum identifies a role for the GluN2D subunit in sex-specific effects of NMDAR antagonists and on the differential effects of the R- and S-ket enantiomers.


Asunto(s)
Ketamina , Animales , Femenino , Humanos , Masculino , Ratones , Ketamina/farmacología , Fenciclidina/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , Reconocimiento en Psicología
5.
Epilepsia ; 65(2): 511-526, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38052475

RESUMEN

OBJECTIVE: This study was undertaken to assess reproducibility of the epilepsy outcome and phenotype in a lateral fluid percussion model of posttraumatic epilepsy (PTE) across three study sites. METHODS: A total of 525 adult male Sprague Dawley rats were randomized to lateral fluid percussion-induced brain injury (FPI) or sham operation. Of these, 264 were assigned to magnetic resonance imaging (MRI cohort, 43 sham, 221 traumatic brain injury [TBI]) and 261 to electrophysiological follow-up (EEG cohort, 41 sham, 220 TBI). A major effort was made to harmonize the rats, materials, equipment, procedures, and monitoring systems. On the 7th post-TBI month, rats were video-EEG monitored for epilepsy diagnosis. RESULTS: A total of 245 rats were video-EEG phenotyped for epilepsy on the 7th postinjury month (121 in MRI cohort, 124 in EEG cohort). In the whole cohort (n = 245), the prevalence of PTE in rats with TBI was 22%, being 27% in the MRI and 18% in the EEG cohort (p > .05). Prevalence of PTE did not differ between the three study sites (p > .05). The average seizure frequency was .317 ± .725 seizures/day at University of Eastern Finland (UEF; Finland), .085 ± .067 at Monash University (Monash; Australia), and .299 ± .266 at University of California, Los Angeles (UCLA; USA; p < .01 as compared to Monash). The average seizure duration did not differ between UEF (104 ± 48 s), Monash (90 ± 33 s), and UCLA (105 ± 473 s; p > .05). Of the 219 seizures, 53% occurred as part of a seizure cluster (≥3 seizures/24 h; p >.05 between the study sites). Of the 209 seizures, 56% occurred during lights-on period and 44% during lights-off period (p > .05 between the study sites). SIGNIFICANCE: The PTE phenotype induced by lateral FPI is reproducible in a multicenter design. Our study supports the feasibility of performing preclinical multicenter trials in PTE to increase statistical power and experimental rigor to produce clinically translatable data to combat epileptogenesis after TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Epilepsia Postraumática , Epilepsia , Animales , Masculino , Ratas , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Modelos Animales de Enfermedad , Epilepsia/etiología , Epilepsia Postraumática/etiología , Epilepsia Postraumática/patología , Percusión , Fenotipo , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Convulsiones
6.
Epilepsy Res ; 199: 107263, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38056191

RESUMEN

OBJECTIVE: Project 1 of the Preclinical Multicenter Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) consortium aims to identify preclinical biomarkers for antiepileptogenic therapies following traumatic brain injury (TBI). The international participating centers in Finland, Australia, and the United States have made a concerted effort to ensure protocol harmonization. Here, we evaluate the success of harmonization process by assessing the timing, coverage, and performance between the study sites. METHOD: We collected data on animal housing conditions, lateral fluid-percussion injury model production, postoperative care, mortality, post-TBI physiological monitoring, timing of blood sampling and quality, MR imaging timing and protocols, and duration of video-electroencephalography (EEG) follow-up using common data elements. Learning effect in harmonization was assessed by comparing procedural accuracy between the early and late stages of the project. RESULTS: The animal housing conditions were comparable between the study sites but the postoperative care procedures varied. Impact pressure, duration of apnea, righting reflex, and acute mortality differed between the study sites (p < 0.001). The severity of TBI on D2 post TBI assessed using the composite neuroscore test was similar between the sites, but recovery of acute somato-motor deficits varied (p < 0.001). A total of 99% of rats included in the final cohort in UEF, 100% in Monash, and 79% in UCLA had blood samples taken at all time points. The timing of sampling differed on day (D)2 (p < 0.05) but not D9 (p > 0.05). Plasma quality was poor in 4% of the samples in UEF, 1% in Monash and 14% in UCLA. More than 97% of the final cohort were MR imaged at all timepoints in all study sites. The timing of imaging did not differ on D2 and D9 (p > 0.05), but varied at D30, 5 months, and ex vivo timepoints (p < 0.001). The percentage of rats that completed the monthly high-density video-EEG follow-up and the duration of video-EEG recording on the 7th post-injury month used for seizure detection for diagnosis of post-traumatic epilepsy differed between the sites (p < 0.001), yet the prevalence of PTE (UEF 21%, Monash 22%, UCLA 23%) was comparable between the sites (p > 0.05). A decrease in acute mortality and increase in plasma quality across time reflected a learning effect in the TBI production and blood sampling protocols. SIGNIFICANCE: Our study is the first demonstration of the feasibility of protocol harmonization for performing powered preclinical multi-center trials for biomarker and therapy discovery of post-traumatic epilepsy.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Epilepsia Postraumática , Epilepsia , Animales , Ratas , Biomarcadores , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Modelos Animales de Enfermedad , Epilepsia/etiología , Epilepsia/diagnóstico , Epilepsia Postraumática/etiología , Epilepsia Postraumática/tratamiento farmacológico , Convulsiones , Estudios Multicéntricos como Asunto
7.
Ann Biomed Eng ; 51(12): 2897-2907, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37733109

RESUMEN

In experimental models of cervical spine trauma caused by near-vertex head-first impact, a surrogate headform may be substituted for the cadaveric head. To inform headform design and to verify that such substitution is valid, the force-deformation response of the human head with boundary conditions relevant to cervical spine head-first impact models is required. There are currently no biomechanics data that characterize the force-deformation response of the isolated head supported at the occiput and compressed at the vertex by a flat impactor. The effect of impact velocity (1, 2 or 3 m/s) on the response of human heads (N = 22) subjected to vertex impacts, while supported by a rigid occipital mount, was investigated. 1 and 2 m/s impacts elicited force-deformation responses with two linear regions, while 3 m/s impacts resulted in a single linear region and skull base ring fractures. Peak force and stiffness increased from 1 to 2 and 3 m/s. Deformation at peak force and absorbed energy increased from 1 to 2 m/s, but decreased from 2 to 3 m/s. The data reported herein enhances the limited knowledge on the human head's response to a vertex impact, which may allow for validation of surrogate head models in this loading scenario.


Asunto(s)
Traumatismos Craneocerebrales , Traumatismos del Cuello , Humanos , Traumatismos Craneocerebrales/etiología , Cadáver , Cabeza/fisiología , Vértebras Cervicales/lesiones , Fenómenos Biomecánicos
8.
RSC Med Chem ; 14(8): 1492-1511, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37593570

RESUMEN

We show that dansylcadaverine (1) a known in-cell inhibitor of clathrin mediated endocytosis (CME), moderately inhibits dynamin I (dynI) GTPase activity (IC50 45 µM) and transferrin (Tfn) endocytosis in U2OS cells (IC50 205 µM). Synthesis gave a new class of GTP-competitive dynamin inhibitors, the Sulfonadyns™. The introduction of a terminal cinnamyl moiety greatly enhanced dynI inhibition. Rigid diamine or amide links between the dansyl and cinnamyl moieties were detrimental to dynI inhibition. Compounds with in vitro inhibition of dynI activity <10 µM were tested in-cell for inhibition of CME. These data unveiled a number of compounds, e.g. analogues 33 ((E)-N-(6-{[(3-(4-bromophenyl)-2-propen-1-yl]amino}hexyl)-5-isoquinolinesulfonamide)) and 47 ((E)-N-(3-{[3-(4-bromophenyl)-2-propen-1-yl]amino}propyl)-1-naphthalenesulfonamide)isomers that showed dyn IC50 <4 µM, IC50(CME) <30 µM and IC50(SVE) from 12-265 µM. Both analogues (33 and 47) are at least 10 times more potent that the initial lead, dansylcadaverine (1). Enzyme kinetics revealed these sulfonamide analogues as being GTP competitive inhibitors of dynI. Sulfonadyn-47, the most potent SVE inhibitor observed (IC50(SVE) = 12.3 µM), significantly increased seizure threshold in a 6 Hz mouse psychomotor seizure test at 30 (p = 0.003) and 100 mg kg-1 ip (p < 0.0001), with similar anti-seizure efficacy to the established anti-seizure medication, sodium valproate (400 mg kg-1). The Sulfonadyn™ class of drugs target dynamin and show promise as novel leads for future anti-seizure medications.

9.
Epilepsia ; 64(10): 2806-2817, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37539645

RESUMEN

OBJECTIVE: More than one third of mesial temporal lobe epilepsy (MTLE) patients are resistant to current antiseizure medications (ASMs), and half experience mild-to-moderate adverse effects of ASMs. There is therefore a strong need to develop and test novel ASMs. The objective of this work is to evaluate the pharmacokinetics and neurological toxicity of E2730, a novel uncompetitive inhibitor of γ-aminobutyric acid transporter-1, and to test its seizure suppression effects in a rat model of chronic MTLE. METHODS: We first examined plasma levels and adverse neurological effects of E2730 in healthy Wistar rats. Adult male rats were implanted with osmotic pumps delivering either 10, 20, or 100 mg/kg/day of E2730 subcutaneously for 1 week. Blood sampling and behavioral assessments were performed at several timepoints. We next examined whether E2730 suppressed seizures in rats with chronic MTLE. These rats were exposed to kainic acid-induced status epilepticus, and 9 weeks later, when chronic epilepsy was established, were assigned to receive one of the three doses of E2730 or vehicle for 1 week in a randomized crossover design. Continuous video-electroencephalographic monitoring was acquired during the treatment period to evaluate epileptic seizures. RESULTS: Plasma levels following continuous infusion of E2730 showed a clear dose-related increase in concentration. The drug was well tolerated at all doses, and any sedation or neuromotor impairment was mild and transient, resolving within 48 h of treatment initiation. Remarkably, E2730 treatment in chronically epileptic rats led to seizure suppression in a dose-dependent manner, with 65% of rats becoming seizure-free at the highest dose tested. Mean seizure class did not differ between the treatment groups. SIGNIFICANCE: This study shows that continuous subcutaneous infusion of E2730 over 7 days results in a marked, dose-dependent suppression of spontaneous recurrent seizures, with minimal adverse neurological effects, in a rat model of chronic MTLE. E2730 shows strong promise as an effective new ASM to be translated into clinical trials.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Humanos , Adulto , Ratas , Masculino , Animales , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Ratas Wistar , Convulsiones/tratamiento farmacológico , Electroencefalografía , Ácido gamma-Aminobutírico , Modelos Animales de Enfermedad , Hipocampo
10.
Epilepsy Res ; 195: 107201, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37562146

RESUMEN

Preclinical MRI studies have been utilized for the discovery of biomarkers that predict post-traumatic epilepsy (PTE). However, these single site studies often lack statistical power due to limited and homogeneous datasets. Therefore, multisite studies, such as the Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx), are developed to create large, heterogeneous datasets that can lead to more statistically significant results. EpiBioS4Rx collects preclinical data internationally across sites, including the United States, Finland, and Australia. However, in doing so, there are robust normalization and harmonization processes that are required to obtain statistically significant and generalizable results. This work describes the tools and procedures used to harmonize multisite, multimodal preclinical imaging data acquired by EpiBioS4Rx. There were four main harmonization processes that were utilized, including file format harmonization, naming convention harmonization, image coordinate system harmonization, and diffusion tensor imaging (DTI) metrics harmonization. By using Python tools and bash scripts, the file formats, file names, and image coordinate systems are harmonized across all the sites. To harmonize DTI metrics, values are estimated for each voxel in an image to generate a histogram representing the whole image. Then, the Quantitative Imaging Toolkit (QIT) modules are utilized to scale the mode to a value of one and depict the subsequent harmonized histogram. The standardization of file formats, naming conventions, coordinate systems, and DTI metrics are qualitatively assessed. The histograms of the DTI metrics were generated for all the individual rodents per site. For inter-site analysis, an average of the individual scans was calculated to create a histogram that represents each site. In order to ensure the analysis can be run at the level of individual animals, the sham and TBI cohort were analyzed separately, which depicted the same harmonization factor. The results demonstrate that these processes qualitatively standardize the file formats, naming conventions, coordinate systems, and DTI metrics of the data. This assists in the ability to share data across the study, as well as disseminate tools that can help other researchers to strengthen the statistical power of their studies and analyze data more cohesively.


Asunto(s)
Epilepsia Postraumática , Epilepsia , Animales , Epilepsia Postraumática/tratamiento farmacológico , Imagen de Difusión Tensora , Imagen por Resonancia Magnética , Biomarcadores , Encéfalo/diagnóstico por imagen
11.
Int J Mol Sci ; 24(14)2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37511595

RESUMEN

Glutamate N-methyl-D-aspartate receptor (NMDAR) hypofunction has been proposed to underlie schizophrenia symptoms. This theory arose from the observation that administration of NMDAR antagonists, which are compounds that inhibit NMDAR activity, reproduces behavioural and molecular schizophrenia-like phenotypes, including hallucinations, delusions and cognitive impairments in healthy humans and animal models. However, the role of specific NMDAR subunits in these schizophrenia-relevant phenotypes is largely unknown. Mounting evidence implicates the GluN2D subunit of NMDAR in some of these symptoms and pathology. Firstly, genetic and post-mortem studies show changes in the GluN2D subunit in people with schizophrenia. Secondly, the psychosis-inducing effects of NMDAR antagonists are blunted in GluN2D-knockout mice, suggesting that the GluN2D subunit mediates NMDAR-antagonist-induced psychotomimetic effects. Thirdly, in the mature brain, the GluN2D subunit is relatively enriched in parvalbumin (PV)-containing interneurons, a cell type hypothesized to underlie the cognitive symptoms of schizophrenia. Lastly, the GluN2D subunit is widely and abundantly expressed early in development, which could be of importance considering schizophrenia is a disorder that has its origins in early neurodevelopment. The limitations of currently available therapies warrant further research into novel therapeutic targets such as the GluN2D subunit, which may help us better understand underlying disease mechanisms and develop novel and more effective treatment options.


Asunto(s)
Esquizofrenia , Animales , Humanos , Ratones , Encéfalo/metabolismo , Interneuronas/metabolismo , Ratones Noqueados , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/metabolismo
12.
Prog Neurobiol ; 227: 102480, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37286031

RESUMEN

The epilepsies are a group of complex neurological disorders characterised by recurrent seizures. Approximately 30% of patients fail to respond to anti-seizure medications, despite the recent introduction of many new drugs. The molecular processes underlying epilepsy development are not well understood and this knowledge gap impedes efforts to identify effective targets and develop novel therapies against epilepsy. Omics studies allow a comprehensive characterisation of a class of molecules. Omics-based biomarkers have led to clinically validated diagnostic and prognostic tests for personalised oncology, and more recently for non-cancer diseases. We believe that, in epilepsy, the full potential of multi-omics research is yet to be realised and we envisage that this review will serve as a guide to researchers planning to undertake omics-based mechanistic studies.


Asunto(s)
Epilepsia , Proteómica , Humanos , Multiómica , Biomarcadores , Epilepsia/genética , Convulsiones
13.
J Pharmacol Exp Ther ; 386(2): 259-265, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37316328

RESUMEN

Post-traumatic epilepsy (PTE) occurs in some patients after moderate/severe traumatic brain injury (TBI). Although there are no approved therapies to prevent epileptogenesis, levetiracetam (LEV) is commonly given for seizure prophylaxis due to its good safety profile. This led us to study LEV as part of the Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) Project. The objective of this work is to characterize the pharmacokinetics (PK) and brain uptake of LEV in naïve control rats and in the lateral fluid percussion injury (LFPI) rat model of TBI after either single intraperitoneal doses or a loading dose followed by a 7-day subcutaneous infusion. Sprague-Dawley rats were used as controls and for the LFPI model induced at the left parietal region using injury parameters optimized for moderate/severe TBI. Naïve and LFPI rats received either a bolus injection (intraperitoneal) or a bolus injection followed by subcutaneous infusion over 7 days. Blood and parietal cortical samples were collected at specified time points throughout the study. LEV concentrations in plasma and brain were measured using validated high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) methods. Noncompartmental analysis and a naive-pooled compartmental PK modeling approach were used. Brain-to-plasma ratios ranged from 0.54 to 1.4 to 1. LEV concentrations were well fit by one-compartment, first-order absorption PK models with a clearance of 112 ml/h per kg and volume of distribution of 293 ml/kg. The single-dose pharmacokinetic data were used to guide dose selection for the longer-term studies, and target drug exposures were confirmed. Obtaining LEV PK information early in the screening phase allowed us to guide optimal treatment protocols in EpiBioS4Rx. SIGNIFICANCE STATEMENT: The characterization of levetiracetam pharmacokinetics and brain uptake in an animal model of post-traumatic epilepsy is essential to identify target concentrations and guide optimal treatment for future studies.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Epilepsia Postraumática , Ratas , Animales , Levetiracetam , Epilepsia Postraumática/tratamiento farmacológico , Percusión , Espectrometría de Masas en Tándem , Ratas Sprague-Dawley , Encéfalo , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Anticonvulsivantes/uso terapéutico , Modelos Animales de Enfermedad
14.
Environ Int ; 178: 107966, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37390771

RESUMEN

BACKGROUND: Noise pollution from transportation is one of the leading contributors to the environmental disease burden in Europe. We provide a novel assessment of spatial variations of these health impacts within a country, using England as an example. METHODS: We estimated the burden of annoyance (highly annoyed), sleep disturbance (highly sleep disturbed), ischemic heart disease (IHD), stroke, and diabetes attributable to long-term transportation noise exposures in England for the adult population in 2018 down to local authority level (average adult population: 136,000). To derive estimates, we combined literature-informed exposure-response relationships, with population data on noise exposures, disease, and mortalities. Long-term average noise exposures from road, rail and aircraft were sourced from strategic noise mapping, with a lower exposure threshold of 50 dB (decibels) Lden and Lnight. RESULTS: 40 %, 4.5 % and 4.8 % of adults in England were exposed to road, rail, and aircraft noise exceeding 50 dB Lden. We estimated close to a hundred thousand (∼97,000) disability adjusted life years (DALY) lost due to road-traffic, ∼13,000 from railway, and âˆ¼ 17,000 from aircraft noise. This excludes some noise-outcome pairs as there were too few studies available to provide robust exposure-response estimates. Annoyance and sleep disturbance accounted for the majority of the DALYs, followed by strokes, IHD, and diabetes. London, the South East, and North West regions had the greatest number of road-traffic DALYs lost, while 63 % of all aircraft noise DALYs were found in London. The strategic noise mapping did not include all roads, which may still have significant traffic flows. In sensitivity analyses using modelled noise from all roads in London, the DALYs were 1.1x to 2.2x higher. CONCLUSION: Transportation noise exposures contribute to a significant and unequal environmental disease burden in England. Omitting minor roads from the noise exposure modelling leads to underestimation of the disease burden.


Asunto(s)
Isquemia Miocárdica , Ruido del Transporte , Trastornos del Sueño-Vigilia , Accidente Cerebrovascular , Adulto , Humanos , Ruido del Transporte/efectos adversos , Europa (Continente) , Costo de Enfermedad , Inglaterra/epidemiología , Aeronaves , Trastornos del Sueño-Vigilia/epidemiología , Trastornos del Sueño-Vigilia/etiología , Exposición a Riesgos Ambientales/efectos adversos
15.
J Neurosci ; 43(31): 5693-5709, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37369587

RESUMEN

The trial-unique nonmatching to location (TUNL) touchscreen task shows promise as a translational assay of working memory (WM) deficits in rodent models of autism, ADHD, and schizophrenia. However, the low-level neurocognitive processes that drive behavior in the TUNL task have not been fully elucidated. In particular, it is commonly assumed that the TUNL task predominantly measures spatial WM dependent on hippocampal pattern separation, but this proposition has not previously been tested. In this project, we tested this question using computational modeling of behavior from male and female mice performing the TUNL task (N = 163 across three datasets; 158,843 trials). Using this approach, we empirically tested whether TUNL behavior solely measured retrospective WM, or whether it was possible to deconstruct behavior into additional neurocognitive subprocesses. Overall, contrary to common assumptions, modeling analyses revealed that behavior on the TUNL task did not primarily reflect retrospective spatial WM. Instead, behavior was best explained as a mixture of response strategies, including both retrospective WM (remembering the spatial location of a previous stimulus) and prospective WM (remembering an anticipated future behavioral response) as well as animal-specific response biases. These results suggest that retrospective spatial WM is just one of a number of cognitive subprocesses that contribute to choice behavior on the TUNL task. We suggest that findings can be understood within a resource-rational framework, and use computational model simulations to propose several task-design principles that we predict will maximize spatial WM and minimize alternative behavioral strategies in the TUNL task.SIGNIFICANCE STATEMENT Touchscreen tasks represent a paradigm shift for assessment of cognition in nonhuman animals by automating large-scale behavioral data collection. Their main relevance, however, depends on the assumption of functional equivalence to cognitive domains in humans. The trial-unique, delayed nonmatching to location (TUNL) touchscreen task has revolutionized the study of rodent spatial working memory. However, its assumption of functional equivalence to human spatial working memory is untested. We leveraged previously untapped single-trial TUNL data to uncover a novel set of hierarchically ordered cognitive processes that underlie mouse behavior on this task. The strategies used demonstrate multiple cognitive approaches to a single behavioral outcome and the requirement for more precise task design and sophisticated data analysis in interpreting rodent spatial working memory.


Asunto(s)
Hipocampo , Memoria a Corto Plazo , Humanos , Ratones , Masculino , Femenino , Animales , Memoria a Corto Plazo/fisiología , Estudios Prospectivos , Estudios Retrospectivos , Hipocampo/fisiología , Trastornos de la Memoria , Sesgo
16.
Environ Res ; 232: 116075, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37182833

RESUMEN

BACKGROUND: Exposure to environmental noise is associated with adverse health effects, but there is potential for confounding and interaction with air pollution, particularly where both exposures arise from the same source, such as transport. OBJECTIVES: To review evidence on confounding and interaction of air pollution in relation to associations between environmental noise and cardiovascular outcomes. METHODS: Papers were identified from similar reviews published in 2013 and 2015, from the systematic reviews supporting the WHO 2018 noise guidelines, and from a literature search covering the period 2016-2022 using Medline and PubMed databases. Additional papers were identified from colleagues. Study selection was according to PECO inclusion criteria. Studies were evaluated against the WHO checklist for risk of bias. RESULTS: 52 publications, 36 published after 2015, were identified that assessed associations between transportation noise and cardiovascular outcomes, that also considered potential confounding (49 studies) or interaction (23 studies) by air pollution. Most, but not all studies, suggested that the associations between traffic noise and cardiovascular outcomes are independent of air pollution. NO2 or PM2.5 were the most commonly included air pollutants and we observed no clear differences across air pollutants in terms of the potential confounding role. Most papers did not appear to suggest an interaction between noise and air pollution. Eight studies found the largest noise effect estimates occurring within the higher noise and air pollution exposure categories, but were not often statistically significant. CONCLUSION: Whilst air pollution does not appear to confound associations of noise and cardiovascular health, more studies on potential interactions are needed. Current methods to assess quality of evidence are not optimal when evaluating evidence on confounding or interaction.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ruido del Transporte , Exposición a Riesgos Ambientales/análisis , Contaminación del Aire/efectos adversos , Contaminantes Atmosféricos/análisis , Ruido del Transporte/efectos adversos , Bases de Datos Factuales , Material Particulado/análisis
17.
Epilepsia Open ; 8(2): 586-608, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37026764

RESUMEN

OBJECTIVE: We used the lateral fluid percussion injury (LFPI) model of moderate-to-severe traumatic brain injury (TBI) to identify early plasma biomarkers predicting injury, early post-traumatic seizures or neuromotor functional recovery (neuroscores), considering the effect of levetiracetam, which is commonly given after severe TBI. METHODS: Adult male Sprague-Dawley rats underwent left parietal LFPI, received levetiracetam (200 mg/kg bolus, 200 mg/kg/day subcutaneously for 7 days [7d]) or vehicle post-LFPI, and were continuously video-EEG recorded (n = 14/group). Sham (craniotomy only, n = 6), and naïve controls (n = 10) were also used. Neuroscores and plasma collection were done at 2d or 7d post-LFPI or equivalent timepoints in sham/naïve. Plasma protein biomarker levels were determined by reverse phase protein microarray and classified according to injury severity (LFPI vs. sham/control), levetiracetam treatment, early seizures, and 2d-to-7d neuroscore recovery, using machine learning. RESULTS: Low 2d plasma levels of Thr231 -phosphorylated tau protein (pTAU-Thr231 ) and S100B combined (ROC AUC = 0.7790) predicted prior craniotomy surgery (diagnostic biomarker). Levetiracetam-treated LFPI rats were differentiated from vehicle treated by the 2d-HMGB1, 2d-pTAU-Thr231 , and 2d-UCHL1 plasma levels combined (ROC AUC = 0.9394) (pharmacodynamic biomarker). Levetiracetam prevented the seizure effects on two biomarkers that predicted early seizures only among vehicle-treated LFPI rats: pTAU-Thr231 (ROC AUC = 1) and UCHL1 (ROC AUC = 0.8333) (prognostic biomarker of early seizures among vehicle-treated LFPI rats). Levetiracetam-resistant early seizures were predicted by high 2d-IFNγ plasma levels (ROC AUC = 0.8750) (response biomarker). 2d-to-7d neuroscore recovery was best predicted by higher 2d-S100B, lower 2d-HMGB1, and 2d-to-7d increase in HMGB1 or decrease in TNF (P < 0.05) (prognostic biomarkers). SIGNIFICANCE: Antiseizure medications and early seizures need to be considered in the interpretation of early post-traumatic biomarkers.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Proteína HMGB1 , Ratas , Masculino , Animales , Levetiracetam/farmacología , Ratas Sprague-Dawley , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Convulsiones/tratamiento farmacológico , Biomarcadores , Proteínas Sanguíneas
18.
J Alzheimers Dis ; 94(s1): S253-S265, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37092226

RESUMEN

BACKGROUND: Neuroinflammation is an innate immunological response of the central nervous system that may be induced by a brain insult and chronic neurodegenerative conditions. Recent research has shown that neuroinflammation may contribute to the initiation of Alzheimer's disease (AD) pathogenesis and associated epileptogenesis. OBJECTIVE: This systematic review aimed to investigate the available literature on the shared molecular mechanisms of neuroinflammation in AD and epilepsy. METHODS: The search included in this systematic review was obtained from 5 established databases. A total of 2,760 articles were screened according to inclusion criteria. Articles related to the modulation of the inflammatory biomarkers commonly associated with the progression of AD and epilepsy in all populations were included in this review. RESULTS: Only 7 articles met these criteria and were chosen for further analysis. Selected studies include both in vitro and in vivo research conducted on rodents. Several neuroinflammatory biomarkers were reported to be involved in the cross-talk between AD and epilepsy. CONCLUSION: Neuroinflammation was directly associated with the advancement of AD and epilepsy in populations compared to those with either AD or epilepsy. However, more studies focusing on common inflammatory biomarkers are required to develop standardized monitoring guidelines to prevent the manifestation of epilepsy and delay the progression of AD in patients.


Asunto(s)
Enfermedad de Alzheimer , Epilepsia , Humanos , Enfermedad de Alzheimer/patología , Enfermedades Neuroinflamatorias , Encéfalo/patología , Epilepsia/complicaciones , Biomarcadores
19.
Artículo en Inglés | MEDLINE | ID: mdl-37107731

RESUMEN

INTRODUCTION: A concussion or sports-related concussion (SRC) is a traumatic brain injury induced by biomechanical forces. After a SRC diagnosis is made, a concussed individual must undergo a period away from competition while they return to their baseline level of functioning. The Union Cycliste Internationale (UCI) currently recommend a minimum of 6 days restriction from competitive cycling following a SRC but there is a growing feeling amongst those involved in brain injury research that this period is too short. Therefore, how much time should cyclists be removed from competitive sporting action following a SRC? AIMS: To review the time out of competition following the diagnosis of a SRC for elite cyclists within British Cycling (BC). METHODS: All medical records for elite cyclists within BC were audited for diagnoses of "concussion" or "sports-related concussions" from January 2017 until September 2022. The days out of competition following the concussion until ready to compete again (that is, returned to full training) was then calculated. All diagnoses and management of SRC were undertaken by the medical team at BC and in-keeping with current international guidelines. RESULTS: Between January 2017 and September 2022, there were 88 concussions diagnosed, 54 being males and 8 in para-athletes. The median duration for time out of competition for all concussions was 16 days. There was no statistical difference between males (median 15.5 days) and females (median 17.5 days) for time out of competition (p-value 0.25). The median duration out of competition following a concussion for able-bodied athletes was 16 (80 athletes) compared to 51 days (8 athletes) in para-cyclists, which was not statistically different (p-value 0.39). CONCLUSIONS: This is the first study to report SRC concussion recovery times in elite cycling, including para-athletes. Between January 2017 and September 2022, there were 88 concussions diagnosed at BC and the median duration for time out of competition for all concussions was 16 days. There was no statistically significant difference in recovery times between male and females and para- and able-bodied athletes. This data should be used to help establish minimum withdrawal times post-SRC for elite cycling participation and we call on the UCI to review this data when establishing SRC protocols for cycling, with further research required in para-cyclists.


Asunto(s)
Traumatismos en Atletas , Conmoción Encefálica , Deportes , Femenino , Humanos , Masculino , Traumatismos en Atletas/diagnóstico , Conmoción Encefálica/diagnóstico , Atletas , Ciclismo
20.
Epilepsia ; 64(6): 1684-1693, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36916834

RESUMEN

OBJECTIVE: Stress is one of the most commonly reported triggers for seizures in patients with epilepsy, although the mechanisms that mediate this effect are not established. The clinical evidence supporting this is derived from patients' subjective experience of stress, and how this influences their own seizures. Animal models can be used to explore this phenomenon in controlled environments, free from subjective bias. Here, we used genetic absence epilepsy rats from Strasbourg (GAERS), a genetic rat model of absence epilepsy, to explore the influence of stress and stress hormones on spontaneous seizures. METHODS: Adult male GAERS (n = 38) and nonepileptic control (NEC) rats (n = 4) were used. First, rats were subjected to 30-min restraint stress to assess hypothalamic-pituitary-adrenal axis function. Next, we assessed the effects of 30-min noise stress, and cage tilt stress, on spike-wave discharge seizures in GAERS. We then performed pharmacological experiments to assess the direct effects of stress hormones on seizures, including corticosterone, metyrapone, and deoxycorticosterone. RESULTS: GAERS exhibited elevated baseline corticosterone levels, compared to NEC rats. Noise stress and cage tilt stress significantly enhanced seizure incidence (p < .05), but only during stress periods. Exogenous corticosterone administration also significantly increased seizure occurrence (p < .05). Metyrapone, an inhibitor of corticosterone synthesis, completely abolished seizures in GAERS, and seizures remained suppressed for >2 h. However, deoxycorticosterone, the precursor of corticosterone, increased seizures. SIGNIFICANCE: These results suggest that GAERS exhibit elevations in stress hormones, and this may contribute to seizures. Inhibiting corticosterone synthesis with metyrapone prevents seizures in GAERS, and shows potential for repurposing this drug as a future antiseizure medication.


Asunto(s)
Epilepsia Tipo Ausencia , Humanos , Ratas , Masculino , Animales , Epilepsia Tipo Ausencia/genética , Metirapona/farmacología , Corticosterona , Sistema Hipotálamo-Hipofisario , Alta del Paciente , Electroencefalografía , Sistema Hipófiso-Suprarrenal , Convulsiones , Desoxicorticosterona , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...