Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Transl Med ; 12(541)2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32350132

RESUMEN

Gastrointestinal stromal tumor (GIST) is the most common human sarcoma driven by mutations in KIT or platelet-derived growth factor α (PDGFRα). Although first-line treatment, imatinib, has revolutionized GIST treatment, drug resistance due to acquisition of secondary KIT/PDGFRα mutations develops in a majority of patients. Second- and third-line treatments, sunitinib and regorafenib, lack activity against a plethora of mutations in KIT/PDGFRα in GIST, with median time to disease progression of 4 to 6 months and inhibition of vascular endothelial growth factor receptor 2 (VEGFR2) causing high-grade hypertension. Patients with GIST have an unmet need for a well-tolerated drug that robustly inhibits a range of KIT/PDGFRα mutations. Here, we report the discovery and pharmacological characterization of AZD3229, a potent and selective small-molecule inhibitor of KIT and PDGFRα designed to inhibit a broad range of primary and imatinib-resistant secondary mutations seen in GIST. In engineered and GIST-derived cell lines, AZD3229 is 15 to 60 times more potent than imatinib in inhibiting KIT primary mutations and has low nanomolar activity against a wide spectrum of secondary mutations. AZD3229 causes durable inhibition of KIT signaling in patient-derived xenograft (PDX) models of GIST, leading to tumor regressions at doses that showed no changes in arterial blood pressure (BP) in rat telemetry studies. AZD3229 has a superior potency and selectivity profile to standard of care (SoC) agents-imatinib, sunitinib, and regorafenib, as well as investigational agents, avapritinib (BLU-285) and ripretinib (DCC-2618). AZD3229 has the potential to be a best-in-class inhibitor for clinically relevant KIT/PDGFRα mutations in GIST.


Asunto(s)
Antineoplásicos , Tumores del Estroma Gastrointestinal , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos , Tumores del Estroma Gastrointestinal/tratamiento farmacológico , Tumores del Estroma Gastrointestinal/genética , Humanos , Mutación , Naftiridinas , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-kit/genética , Pirazoles , Pirroles , Ratas , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Triazinas , Urea/análogos & derivados , Factor A de Crecimiento Endotelial Vascular
2.
J Pharm Sci ; 100(10): 4090-110, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21541938

RESUMEN

The objective of this study was to evaluate the performance of various allometric and in vitro-in vivo extrapolation (IVIVE) methodologies with and without plasma protein binding corrections for the prediction of human intravenous (i.v.) clearance (CL). The objective was also to evaluate the IVIVE prediction methods with animal data. Methodologies were selected from the literature. Pharmaceutical Research and Manufacturers of America member companies contributed blinded datasets from preclinical and clinical studies for 108 compounds, among which 19 drugs had i.v. clinical pharmacokinetics data and were used in the analysis. In vivo and in vitro preclinical data were used to predict CL by 29 different methods. For many compounds, in vivo data from only two species (generally rat and dog) were available and/or the required in vitro data were missing, which meant some methods could not be properly evaluated. In addition, 66 methods of predicting oral (p.o.) area under the curve (AUCp.o. ) were evaluated for 107 compounds using rational combinations of i.v. CL and bioavailability (F), and direct scaling of observed p.o. CL from preclinical species. Various statistical and outlier techniques were employed to assess the predictability of each method. Across methods, the maximum success rate in predicting human CL for the 19 drugs was 100%, 94%, and 78% of the compounds with predictions falling within 10-fold, threefold, and twofold error, respectively, of the observed CL. In general, in vivo methods performed slightly better than IVIVE methods (at least in terms of measures of correlation and global concordance), with the fu intercept method and two-species-based allometry (rat-dog) being the best performing methods. IVIVE methods using microsomes (incorporating both plasma and microsomal binding) and hepatocytes (not incorporating binding) resulted in 75% and 78%, respectively, of the predictions falling within twofold error. IVIVE methods using other combinations of binding assumptions were much less accurate. The results for prediction of AUCp.o. were consistent with i.v. CL. However, the greatest challenge to successful prediction of human p.o. CL is the estimate of F in human. Overall, the results of this initiative confirmed predictive performance of common methodologies used to predict human CL.


Asunto(s)
Bases de Datos Farmacéuticas , Descubrimiento de Drogas/métodos , Modelos Biológicos , Preparaciones Farmacéuticas/metabolismo , Farmacocinética , Acceso a la Información , Administración Intravenosa , Animales , Área Bajo la Curva , Simulación por Computador , Conducta Cooperativa , Perros , Evaluación Preclínica de Medicamentos , Humanos , Comunicación Interdisciplinaria , Tasa de Depuración Metabólica , Modelos Estadísticos , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/sangre , Desarrollo de Programa , Evaluación de Programas y Proyectos de Salud , Unión Proteica , Ratas , Reproducibilidad de los Resultados , Especificidad de la Especie
3.
J Pharm Sci ; 100(10): 4050-73, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21523782

RESUMEN

This study is part of the Pharmaceutical Research and Manufacturers of America (PhRMA) initiative on predictive models of efficacy, safety, and compound properties. The overall goal of this part was to assess the predictability of human pharmacokinetics (PK) from preclinical data and to provide comparisons of available prediction methods from the literature, as appropriate, using a representative blinded dataset of drug candidates. The key objectives were to (i) appropriately assemble and blind a diverse dataset of in vitro, preclinical in vivo, and clinical data for multiple drug candidates, (ii) evaluate the dataset with empirical and physiological methodologies from the literature used to predict human PK properties and plasma concentration-time profiles, (iii) compare the predicted properties with the observed clinical data to assess the prediction accuracy using routine statistical techniques and to evaluate prediction method(s) based on the degree of accuracy of each prediction method, and (iv) compile and summarize results for publication. Another objective was to provide a mechanistic understanding as to why one methodology provided better predictions than another, after analyzing the poor predictions. A total of 108 clinical lead compounds were collected from 12 PhRMA member companies. This dataset contains intravenous (n = 19) and oral pharmacokinetic data (n = 107) in humans as well as the corresponding preclinical in vitro, in vivo, and physicochemical data. All data were blinded to protect the anonymity of both the data and the company submitting the data. This manuscript, which is the first of a series of manuscripts, summarizes the PhRMA initiative and the 108 compound dataset. More details on the predictability of each method are reported in companion manuscripts.


Asunto(s)
Bases de Datos Farmacéuticas , Descubrimiento de Drogas/métodos , Modelos Biológicos , Preparaciones Farmacéuticas/metabolismo , Farmacocinética , Acceso a la Información , Administración Intravenosa , Administración Oral , Animales , Simulación por Computador , Conducta Cooperativa , Evaluación Preclínica de Medicamentos , Humanos , Comunicación Interdisciplinaria , Modelos Estadísticos , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/sangre , Preparaciones Farmacéuticas/química , Desarrollo de Programa , Evaluación de Programas y Proyectos de Salud , Reproducibilidad de los Resultados , Medición de Riesgo , Factores de Riesgo , Especificidad de la Especie
4.
J Pharm Sci ; 100(10): 4074-89, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21452299

RESUMEN

The objective of this study was to evaluate the performance of various empirical, semimechanistic and mechanistic methodologies with and without protein binding corrections for the prediction of human volume of distribution at steady state (Vss ). PhRMA member companies contributed a set of blinded data from preclinical and clinical studies, and 18 drugs with intravenous clinical pharmacokinetics (PK) data were available for the analysis. In vivo and in vitro preclinical data were used to predict Vss by 24 different methods. Various statistical and outlier techniques were employed to assess the predictability of each method. There was not simply one method that predicts Vss accurately for all compounds. Across methods, the maximum success rate in predicting human Vss was 100%, 94%, and 78% of the compounds with predictions falling within tenfold, threefold, and twofold error, respectively, of the observed Vss . Generally, the methods that made use of in vivo preclinical data were more predictive than those methods that relied solely on in vitro data. However, for many compounds, in vivo data from only two species (generally rat and dog) were available and/or the required in vitro data were missing, which meant some methods could not be properly evaluated. It is recommended to initially use the in vitro tissue composition-based equations to predict Vss in preclinical species and humans, putting the assumptions and compound properties into context. As in vivo data become available, these predictions should be reassessed and rationalized to indicate the level of confidence (uncertainty) in the human Vss prediction. The top three methods that perform strongly at integrating in vivo data in this way were the Øie-Tozer, the rat -dog-human proportionality equation, and the lumped-PBPK approach. Overall, the scientific benefit of this study was to obtain greater characterization of predictions of human Vss from several methods available in the literature.


Asunto(s)
Bases de Datos Farmacéuticas , Descubrimiento de Drogas/métodos , Modelos Biológicos , Preparaciones Farmacéuticas/metabolismo , Farmacocinética , Acceso a la Información , Administración Intravenosa , Animales , Simulación por Computador , Conducta Cooperativa , Perros , Evaluación Preclínica de Medicamentos , Humanos , Comunicación Interdisciplinaria , Modelos Estadísticos , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/sangre , Desarrollo de Programa , Evaluación de Programas y Proyectos de Salud , Unión Proteica , Ratas , Reproducibilidad de los Resultados , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...