Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Exp Neurol ; 372: 114621, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38029809

RESUMEN

Traumatic brain injury (TBI) is an outside force causing a modification in brain function and/or structural brain pathology that upregulates brain inducible nitric oxide synthase (iNOS), instigating increased levels of nitric oxide activity which is implicated in secondary pathology leading to behavioral deficits (Hall et al., 2012; Garry et al., 2015; Kozlov et al., 2017). In mammals, TBI-induced NO production activates an immune response and potentiates metabolic crisis through mitochondrial dysfunction coupled with vascular dysregulation; however, the direct influence on pathology is complicated by the activation of numerous secondary cascades and activation of other reactive oxygen species. Drosophila TBI models have demonstrated key features of mammalian TBI, including temporary incapacitation, disorientation, motor deficits, activation of innate immunity (inflammation), and autophagy responses observed immediately after injury (Katzenberger et al., 2013; Barekat et al., 2016; Simon et al., 2017; Anderson et al., 2018; Buhlman et al., 2021b). We hypothesized that acute behavioral phenotypes would be associated with deficits in climbing behavior and increased oxidative stress. Because flies lack mammalian-like cardiovascular and adaptive immune systems, we were able to make our observations in the absence of vascular disruption and adaptive immune system interference in a system where highly targeted interventions can be rapidly evaluated. To demonstrate the induction of injury, ten-day-old transgenic flies received an injury of increasing angles from a modified high impact trauma (HIT) device where angle-dependent increases occurred for acute neurological behavior assessments and twenty-four-hour mortality, and survival was significantly decreased. Injury caused sex-dependent effects on climbing activity and measures of oxidative stress. Specifically, after a single 60-degree HIT, female flies exhibited significant impairments in climbing activity beyond that observed in male flies. We also found that several measures of oxidative stress, including Drosophila NOS (dNOS) expression, protein nitration, and hydrogen peroxide production were significantly decreased in female flies. Interestingly, protein nitration was also decreased in males, but surpassed sham levels with a more severe injury. We also observed decreased autophagy demand in vulnerable dopaminergic neurons in female, but not male flies. In addition, mitophagy initiation was decreased in females. Collectively, our data suggest that TBI in flies induces acute behavioral phenotypes and climbing deficits that are analogous to mammalian TBI. We also observed that various indices of oxidative stress, including dNOS expression, protein tyrosine nitration, and hydrogen peroxide levels, as well as basal levels of autophagy, are altered in response to injury, an effect that is more pronounced in female flies.


Asunto(s)
Conmoción Encefálica , Lesiones Traumáticas del Encéfalo , Animales , Masculino , Femenino , Drosophila melanogaster/metabolismo , Conmoción Encefálica/patología , Oxígeno , Peróxido de Hidrógeno , Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Mamíferos
2.
Biomed Pharmacother ; 142: 112079, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34463269

RESUMEN

Drosophilae are emerging as a valuable model to study traumatic brain injury (TBI)-induced secondary injury cascades that drive persisting neuroinflammation and neurodegenerative pathology that imposes significant risk for long-term neurological deficits. As in mammals, TBI in Drosophila triggers axonal injury, metabolic crisis, oxidative stress, and a robust innate immune response. Subsequent neurodegeneration stresses quality control systems and perpetuates an environment for neuroprotection, regeneration, and delayed cell death via highly conserved cell signaling pathways. Fly injury models continue to be developed and validated for both whole-body and head-specific injury to isolate, evaluate, and modulate these parallel pathways. In conjunction with powerful genetic tools, the ability for longitudinal evaluation, and associated neurological deficits that can be tested with established behavioral tasks, Drosophilae are an attractive model to explore secondary injury cascades and therapeutic intervention after TBI. Here, we review similarities and differences between mammalian and fly pathophysiology and highlight strategies for their use in translational neurotrauma research.


Asunto(s)
Lesiones Traumáticas del Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Animales , Lesiones Traumáticas del Encéfalo/complicaciones , Drosophila , Humanos , Inmunidad Innata/inmunología , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/fisiopatología , Enfermedades Neuroinflamatorias/etiología , Enfermedades Neuroinflamatorias/fisiopatología , Estrés Oxidativo/fisiología , Especificidad de la Especie
3.
J Alzheimers Dis ; 53(1): 95-106, 2016 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-27128370

RESUMEN

The APOE gene, encoding apolipoprotein E, is the primary genetic risk factor for late-onset Alzheimer's disease (AD). Apolipoprotein E ɛ4 allele (APOE4) carriers have alterations in brain structure and function (as measured by brain imaging) even as young adults. Examination of this population is valuable in further identifying details of these functional changes and their association with vulnerability to AD decades later. Previous work demonstrates functional declines in mitochondrial activity in the posterior cingulate cortex, a key region in the default mode network, which appears to be strongly associated with functional changes relevant to AD risk. Here, we demonstrate alterations in the pathways underlying glucose, ketone, and mitochondrial energy metabolism. Young adult APOE4 carriers displayed upregulation of specific glucose (GLUT1 & GLUT3) and monocarboxylate (MCT2) transporters, the glucose metabolism enzyme hexokinase, the SCOT & AACS enzymes involved in ketone metabolism, and complexes I, II, and IV of the mitochondrial electron transport chain. The monocarboxylate transporter (MCT4) was found to be downregulated in APOE4 carriers. These data suggest that widespread dysregulation of energy metabolism in this at-risk population, even decades before possible disease onset. Therefore, these findings support the idea that alterations in brain energy metabolism may contribute significantly to the risk that APOE4 confers for AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Apolipoproteína E4/genética , Metabolismo Energético/genética , Regulación de la Expresión Génica/genética , Giro del Cíngulo/metabolismo , Adulto , Sistema de Transporte de Aminoácidos X-AG/genética , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Femenino , Hexoquinasa/genética , Hexoquinasa/metabolismo , Humanos , Masculino , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , ARN Mensajero/metabolismo , Adulto Joven
4.
Exp Neurol ; 258: 78-90, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25017889

RESUMEN

Over the past 15 years an immense amount of data has accumulated regarding the infiltration and activation of lymphocytes in the traumatized spinal cord. Although the impact of the intraspinal accumulation of lymphocytes is still unclear, modulation of the adaptive immune response via active and passive vaccination is being evaluated for its preclinical efficacy in improving the outcome for spinal-injured individuals. The complexity of the interaction between the nervous and the immune systems is highlighted in the contradictions that appear in response to these modulations. Current evidence regarding augmentation and inhibition of the adaptive immune response to spinal cord injury is reviewed with an aim toward reconciling conflicting data and providing consensus issues that may be exploited in future therapies. Opportunities such an approach may provide are highlighted as well as the obstacles that must be overcome before such approaches can be translated into clinical trials.


Asunto(s)
Autoinmunidad/inmunología , Linfocitos/inmunología , Traumatismos de la Médula Espinal/inmunología , Animales , Humanos , Linfocitos/patología , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/terapia , Vacunación/métodos
5.
Anat Rec (Hoboken) ; 296(8): 1229-46, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23775900

RESUMEN

Postinjury inflammation has been implicated in secondary degeneration following injury to the spinal cord. The cellular inflammatory response to injury has not been described in the lateral compression injury model, although various types of compression injuries account for ∼20% of human spinal cord injuries (SCI). Here, we used forceps to induce a moderate compression injury to the thoracic spinal cord of female Sprague-Dawley rats. We evaluated innate and adaptive components of the inflammatory response at various times postinjury using immunohistochemical techniques. We show that components of innate immunity (e.g., macrophages and dendritic cells) peak between 1 and 2 weeks postinjury but persist through 42 days postinjury (dpi). CD163 and CD206 expression, associated with an anti-inflammatory, reparative phenotype, was upregulated on activated macrophages in the injury site, as were MHC class II antigens. The expression of MHC class II antigens is necessary for the initiation of adaptive immunity and was accompanied by an influx of T cells. T cells were initially restricted to gray matter at the injury epicenter but were later observed throughout the lesioned parenchyma. In summary, we demonstrate that lateral forceps compression of the spinal cord produces a neuroinflammatory response similar to that described in human spinal cord trauma and in other experimental models of spinal cord trauma, thus is an appropriate model to study secondary neurodegeneration in SCI.


Asunto(s)
Mielitis/etiología , Mielitis/patología , Compresión de la Médula Espinal/complicaciones , Compresión de la Médula Espinal/patología , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/patología , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Modelos Animales de Enfermedad , Femenino , Antígenos de Histocompatibilidad Clase II/metabolismo , Inmunidad Innata , Lectinas Tipo C/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Receptor de Manosa , Lectinas de Unión a Manosa/metabolismo , Mielitis/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Superficie Celular/metabolismo , Compresión de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Instrumentos Quirúrgicos/efectos adversos , Linfocitos T/metabolismo , Linfocitos T/patología , Vértebras Torácicas
6.
Exp Neurol ; 207(1): 75-84, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17597612

RESUMEN

Individuals with spinal cord injury (SCI) are highly susceptible to infection. This post-traumatic immune suppression is thought to occur via alterations in sympathetic nervous system (SNS) or hypothalamic-pituitary-adrenal (HPA) axis function. Normally, the HPA axis and SNS help coordinate proper immune function. After SCI, the HPA axis becomes activated and descending input to sympathetic preganglionic neurons (SPNs) is impaired. Because lymphoid organs are innervated by SPNs distributed throughout the thoracolumbar spinal cord, we predicted level-dependent immune suppression after SCI due to activation of the HPA axis and loss of descending input to SPNs. We tested this hypothesis by measuring indices of HPA (circulating corticosterone; CORT) and SNS function (norepinephrine (NE) in spleen) as well as antigen-specific antibody synthesis against an exogenous non-self protein following high- or low-level SCI. Using a mid-thoracic (T9) spinal contusion injury model, we found that CORT was elevated after SCI with aberrant patterns of diurnal CORT synthesis evident through at least the first 24 h post-injury. However, splenic NE and antibody synthesis were similar to uninjured controls. Injury severity did not change these parameters. Indeed, CORT, NE and antibody synthesis were similar after T9 contusion or transection SCI. In contrast, high-level SCI (T3) caused sustained increases in CORT and splenic NE along with impaired antibody synthesis and elevated splenocyte apoptosis. The immunosuppressive effects of T3 SCI were caused by NE acting at beta2-adrenergic receptors (beta2AR) and could be reversed using beta2AR blockers. Interestingly, impaired antibody after T3 SCI could be mimicked after T9 SCI with a beta2AR agonist. These data illustrate the immunosuppressive effects of the SNS after high-level SCI and indicate that immune deficits may be overcome using beta-blockers.


Asunto(s)
Formación de Anticuerpos , Traumatismos de la Médula Espinal/fisiopatología , Sistema Nervioso Simpático/fisiopatología , Animales , Apoptosis , Linfocitos B , Muerte Celular , Contusiones/inmunología , Contusiones/fisiopatología , Corticosterona/antagonistas & inhibidores , Corticosterona/sangre , Femenino , Sistema Hipotálamo-Hipofisario/fisiopatología , Tolerancia Inmunológica , Ratones , Ratones Endogámicos C57BL , Norepinefrina/metabolismo , Sistema Hipófiso-Suprarrenal/fisiopatología , Receptores Adrenérgicos beta 2/metabolismo , Traumatismos de la Médula Espinal/inmunología , Bazo/metabolismo , Bazo/patología , Bazo/fisiopatología , Vértebras Torácicas
7.
J Neurosci ; 25(28): 6576-83, 2005 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-16014718

RESUMEN

The intraspinal cues that orchestrate T-cell migration and activation after spinal contusion injury were characterized using B10.PL (wild-type) and transgenic (Tg) mice with a T-cell repertoire biased toward recognition of myelin basic protein (MBP). Previously, we showed that these strains exhibit distinct anatomical and behavioral phenotypes. In Tg mice, MBP-reactive T-cells are activated by spinal cord injury (SCI), causing more severe axonal injury, demyelination, and functional impairment than is found in non-Tg wild-type mice (B10.PL). Conversely, despite a robust SCI-induced T-cell response in B10.PL mice, no overt T-cell-mediated pathology was evident. Here, we show that chronic intraspinal T-cell accumulation in B10.PL and Tg mice is associated with a dramatic and sustained increase in CXCL10/IP-10 and CCL5/RANTES mRNA expression. However, in Tg mice, chemokine mRNA were enhanced 2- to 17-fold higher than in B10.PL mice and were associated with accelerated intraspinal T-cell influx and enhanced CNS macrophage activation throughout the spinal cord. These data suggest common molecular pathways for initiating T-cell responses after SCI in mice; however, if T-cell reactions are biased against MBP, molecular and cellular determinants of neuroinflammation are magnified in parallel with exacerbation of neuropathology and functional impairment.


Asunto(s)
Quimiocinas/biosíntesis , Quimiotaxis de Leucocito/fisiología , Sustancias de Crecimiento/biosíntesis , Activación de Linfocitos/inmunología , Traumatismos de la Médula Espinal/inmunología , Subgrupos de Linfocitos T/inmunología , Animales , Quimiocina CCL5/biosíntesis , Quimiocina CCL5/genética , Quimiocina CXCL10 , Quimiocinas/genética , Quimiocinas CC/biosíntesis , Quimiocinas CC/genética , Quimiocinas CXC/biosíntesis , Quimiocinas CXC/genética , Contusiones/inmunología , Contusiones/patología , Genes Codificadores de la Cadena beta de los Receptores de Linfocito T , Sustancias de Crecimiento/genética , Factor I del Crecimiento Similar a la Insulina/biosíntesis , Factor I del Crecimiento Similar a la Insulina/genética , Proteína Antagonista del Receptor de Interleucina 1 , Linfocinas , Macrófagos/fisiología , Ratones , Ratones Transgénicos , Microglía/fisiología , Proteína Básica de Mielina/inmunología , Mielitis/etiología , Mielitis/inmunología , Mielitis/patología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Sialoglicoproteínas/biosíntesis , Sialoglicoproteínas/genética , Traumatismos de la Médula Espinal/patología , Especificidad del Receptor de Antígeno de Linfocitos T , Subgrupos de Linfocitos T/patología , Factor de Crecimiento Transformador beta/biosíntesis , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta1
8.
J Neurosci ; 24(15): 3752-61, 2004 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-15084655

RESUMEN

Myelin-reactive T-cells are activated by traumatic spinal cord injury (SCI) in rodents and humans. Despite the historical association of these cells with experimental and clinical neuropathology, recent data suggest a neuroprotective role for myelin-reactive T-cells. Because of the biological and therapeutic implications of these findings, we attempted to reproduce the original neuroprotective vaccine protocols in a model of rat SCI. Specifically, MBP-reactive T-cell function was enhanced in SCI rats via passive or active immunization. Locomotor function was assessed using a standardized locomotor rating scale (Basso-Beattie-Bresnahan scale) and was correlated with myelin and axon sparing. The functional and anatomical integrity of the rubrospinal pathway also was analyzed using the inclined plane test and anatomical tract tracing. MBP-immunized rats exhibited varying degrees of functional impairment, exacerbated lesion pathology, greater rubrospinal neuron loss, increased intraspinal T-cell accumulation, and enhanced macrophage activation relative to SCI control groups. These data are consistent with the conventional view of myelin-reactive T-cells as pathological effector cells.


Asunto(s)
Inmunización Pasiva/métodos , Proteína Básica de Mielina/inmunología , Traumatismos de la Médula Espinal/inmunología , Linfocitos T/inmunología , Vacunación/métodos , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Actividad Motora/inmunología , Vaina de Mielina/inmunología , Mielitis/inmunología , Ratas , Ratas Endogámicas Lew , Recuperación de la Función/inmunología , Médula Espinal/inmunología , Médula Espinal/patología , Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/patología , Linfocitos T/trasplante
9.
J Comp Neurol ; 462(2): 223-40, 2003 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-12794745

RESUMEN

Spinal contusion pathology in rats and mice is distinct. Cystic cavities form at the impact site in rats while a dense connective tissue matrix occupies the injury site in mice. Because inflammatory cells coordinate mechanisms of tissue injury and repair, we evaluated whether the unique anatomical presentation in spinally injured rats and mice is associated with a species-specific inflammatory response. Immunohistochemistry was used to compare the leukocytic infiltrate between rats and mice. Microglia/macrophage reactions were similar between species; however, the onset and magnitude of lymphocyte and dendritic cell (DC) infiltration were markedly different. In rats, T-cell numbers were highest between 3 and 7 days postinjury and declined by 50% over the next 3 weeks. In mice, significant T-cell entry was not evident until 14 days postinjury, with T-cell numbers doubling between 2 and 6 weeks. Dendritic cell influx paralleled T-cell infiltration in rats but was absent in mouse spinal cord. De novo expression of major histocompatability class II molecules was increased in both species but to a greater extent in mice. Unique to mice were cells that resembled lymphocytes but did not express lymphocyte-specific markers. These cells extended from blood vessels within the fibrotic tissue matrix and expressed fibronectin, collagen I, CD11b, CD34, CD13, and CD45. This phenotype is characteristic of fibrocytes, specialized blood-borne cells involved in wound healing and immunity. Thus, species-specific neuroinflammation may contribute to the formation of distinct tissue environments at the site of spinal cord injury in mice and rats.


Asunto(s)
Ratones Endogámicos C57BL/inmunología , Mielitis/inmunología , Ratas Endogámicas Lew/inmunología , Traumatismos de la Médula Espinal/inmunología , Animales , Relación CD4-CD8 , Células Dendríticas/inmunología , Células Dendríticas/patología , Femenino , Fibrosis , Macrófagos/inmunología , Macrófagos/patología , Ratones , Microglía/inmunología , Microglía/patología , Mielitis/patología , Ratas , Especificidad de la Especie , Traumatismos de la Médula Espinal/patología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/patología , Cicatrización de Heridas/inmunología
10.
Trends Pharmacol Sci ; 24(1): 13-7, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12498725

RESUMEN

Recruitment of inflammatory leukocytes to the injured spinal cord is a physiological response that is associated with the production of cytokines and proteinases that are involved in host defense and wound repair. Cells in the spinal cord are mainly post-mitotic and tissue regeneration is poor; thus, these inflammatory mediators can exacerbate the damage to spared tissue and thereby impair spontaneous functional recovery. Although several aspects of immune function might benefit the CNS, experimental studies indicate that acute neuroinflammation aggravates tissue injury. Until the timing and nature of the molecular signals that govern leukocyte recruitment and activation after spinal injury are defined, clinical therapies designed to boost immune cell function should be avoided.


Asunto(s)
Sistema Inmunológico/patología , Neuroinmunomodulación , Traumatismos de la Médula Espinal/inmunología , Traumatismos de la Médula Espinal/patología , Animales , Humanos , Inflamación/inmunología , Inflamación/patología
11.
J Neurosci ; 22(7): 2690-700, 2002 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-11923434

RESUMEN

Lymphocytes respond to myelin proteins after spinal cord injury (SCI) and may contribute to post-traumatic secondary degeneration. However, there is increasing evidence that autoreactive T-lymphocytes may also convey neuroprotection and promote functional recovery after CNS injury. To clarify the role of myelin autoreactive lymphocytes after SCI, we performed contusion injuries in the thoracic spinal cord of transgenic (Tg) mice in which >95% of all CD4+ T-lymphocytes are reactive with myelin basic protein (MBP). We observed significantly impaired recovery of locomotor and reflex function in Tg mice compared with non-Tg (nTg) littermates. Measures of functional impairment in Tg mice correlated with significantly less white matter at the injury site, and morphometric comparisons of injured Tg and nTg spinal cords revealed increased rostrocaudal lesion expansion (i.e., secondary degeneration) in Tg mice. Rostrocaudal to the impact site in SCI-nTg mice, demyelination was restricted to the dorsal funiculus, i.e., axons undergoing Wallerian degeneration. The remaining white matter appeared normal. In contrast, lymphocytes were colocalized with regions of demyelination and axon loss throughout the white matter of SCI-Tg mice. Impaired neurological function and exacerbated neuropathology in SCI-Tg mice were associated with increased intraspinal production of proinflammatory cytokine mRNA; neurotrophin mRNA was not elevated. These data suggest that endogenous MBP-reactive lymphocytes, activated by traumatic SCI, can contribute to tissue injury and impair functional recovery. Any neuroprotection afforded by myelin-reactive T-cells is likely to be an indirect effect mediated by other non-CNS-reactive lymphocytes. Similar to the Tg mice in this study, a subset of humans that are genetically predisposed to autoimmune diseases of the CNS may be adversely affected by vaccine therapies designed to boost autoreactive lymphocyte responses after CNS trauma. Consequently, the safe implementation of such therapies requires that future studies define the mechanisms that control T-cell function within the injured CNS.


Asunto(s)
Enfermedades Autoinmunes Desmielinizantes SNC/etiología , Inmunoterapia Activa/efectos adversos , Traumatismos de la Médula Espinal/complicaciones , Animales , Autoinmunidad/inmunología , Axones/patología , Conducta Animal , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/patología , Citocinas/genética , Citocinas/metabolismo , Enfermedades Autoinmunes Desmielinizantes SNC/patología , Enfermedades Autoinmunes Desmielinizantes SNC/fisiopatología , Progresión de la Enfermedad , Miembro Posterior/inervación , Miembro Posterior/fisiopatología , Procesamiento de Imagen Asistido por Computador , Tejido Linfoide/metabolismo , Tejido Linfoide/patología , Ratones , Ratones Transgénicos , Proteína Básica de Mielina/inmunología , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Reacción en Cadena de la Polimerasa , ARN Mensajero/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Recuperación de la Función , Reflejo , Médula Espinal/patología , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...