Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
1.
J Nucl Med ; 65(5): 714-721, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38548347

RESUMEN

The lungs are supplied by both the pulmonary arteries carrying deoxygenated blood originating from the right ventricle and the bronchial arteries carrying oxygenated blood downstream from the left ventricle. However, this effect of dual blood supply has never been investigated using PET, partially because the temporal resolution of conventional dynamic PET scans is limited. The advent of PET scanners with a long axial field of view, such as the uEXPLORER total-body PET/CT system, permits dynamic imaging with high temporal resolution (HTR). In this work, we modeled the dual-blood input function (DBIF) and studied its impact on the kinetic quantification of normal lung tissue and lung tumors using HTR dynamic PET imaging. Methods: Thirteen healthy subjects and 6 cancer subjects with lung tumors underwent a dynamic 18F-FDG scan with the uEXPLORER for 1 h. Data were reconstructed into dynamic frames of 1 s in the early phase. Regional time-activity curves of lung tissue and tumors were analyzed using a 2-tissue compartmental model with 3 different input functions: the right ventricle input function, left ventricle input function, and proposed DBIF, all with time delay and dispersion corrections. These models were compared for time-activity curve fitting quality using the corrected Akaike information criterion and for differentiating lung tumors from lung tissue using the Mann-Whitney U test. Voxelwise multiparametric images by the DBIF model were further generated to verify the regional kinetic analysis. Results: The effect of dual blood supply was pronounced in the high-temporal-resolution time-activity curves of lung tumors. The DBIF model achieved better time-activity curve fitting than the other 2 single-input models according to the corrected Akaike information criterion. The estimated fraction of left ventricle input was low in normal lung tissue of healthy subjects but much higher in lung tumors (∼0.04 vs. ∼0.3, P < 0.0003). The DBIF model also showed better robustness in the difference in 18F-FDG net influx rate [Formula: see text] and delivery rate [Formula: see text] between lung tumors and normal lung tissue. Multiparametric imaging with the DBIF model further confirmed the differences in tracer kinetics between normal lung tissue and lung tumors. Conclusion: The effect of dual blood supply in the lungs was demonstrated using HTR dynamic imaging and compartmental modeling with the proposed DBIF model. The effect was small in lung tissue but nonnegligible in lung tumors. HTR dynamic imaging with total-body PET can offer a sensitive tool for investigating lung diseases.


Asunto(s)
Neoplasias Pulmonares , Tomografía de Emisión de Positrones , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Cinética , Tomografía de Emisión de Positrones/métodos , Modelos Biológicos , Adulto , Fluorodesoxiglucosa F18 , Anciano , Imagen de Cuerpo Entero , Tomografía Computarizada por Tomografía de Emisión de Positrones , Procesamiento de Imagen Asistido por Computador , Factores de Tiempo , Radiofármacos/farmacocinética
2.
Diabetes Metab Syndr ; 18(2): 102955, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38310736

RESUMEN

BACKGROUND AND AIM: Elevated fasting plasma lactate concentrations are evident in individuals with metabolic diseases. However, it has yet to be determined if these associations exist in a young, healthy population as a possible early marker for metabolic disease risk. The purpose of this study was to determine if indices of the metabolic syndrome are related to plasma lactate concentrations in this population. METHODS: Fifty (29 ± 7 yr) men (n = 19) and women (n = 31) classified as overweight (26.4 ± 1.8 kg/m2) participated in this observational study. Blood pressure and blood metabolites were measured after an overnight fast. Lactate was also measured before and after a three-day eucaloric high-fat (70 %) diet. The homeostatic model assessment for insulin resistance (HOMA-IR) was calculated as a measure of insulin resistance. Visceral adipose tissue mass was determined via dual X-ray absorptiometry. RESULTS: Triglycerides (r = 0.55, p=<0.0001), HOMA-IR (r = 0.53, p=<0.0001), and systolic and diastolic (both, r = 0.36, p = 0.01) blood pressures associated with fasting plasma lactate. No differences in visceral adipose tissue existed between the sexes (p = 0.41); however, the relationship between visceral adipose tissue and lactate existed only in females (r = 0.59, p = 0.02) but not in males (p = 0.53). Fasting lactate and HOMA-IR increased in males (p = 0.01 and p = 0.02, respectively), but not females, following a three-day high-fat diet. CONCLUSION: Indices of the metabolic syndrome associated with fasting plasma lactates in young relatively healthy individuals. Fasting lactate also increased in a sex-specific manner after a three-day high fat diet. Thus, lactate could become a clinical marker for metabolic disease risk.


Asunto(s)
Resistencia a la Insulina , Síndrome Metabólico , Femenino , Humanos , Masculino , Biomarcadores , Ayuno , Insulina , Ácido Láctico , Obesidad/complicaciones , Adulto Joven , Adulto
3.
Free Neuropathol ; 52024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38205217

RESUMEN

Objective: To explore a possible connection between active viral infections and manifestation of dermatomyositis (DM). Methods: Skeletal muscle biopsies were analyzed from patients diagnosed with juvenile (n=10) and adult (n=12) DM. Adult DM patients harbored autoantibodies against either TIF-1γ (n=7) or MDA5 (n=5). Additionally, we investigated skeletal muscle biopsies from non-diseased controls (NDC, n=5). We used an unbiased high-throughput RNA sequencing (HTS) approach to detect viral sequences. To further increase sequencing depth, a host depletion approach was applied. Results: In this observational study, no relevant viral sequences were detected either by native sequencing or after host depletion. The absence of detectable viral sequences makes an active viral infection of the muscle tissue unlikely to be the cause of DM in our cohorts. Discussion: Type I interferons (IFN) play a major role in the pathogenesis of both juvenile and adult DM. The IFN response is remarkably conserved between DM subtypes classified by specific autoantibodies. Certain acute viral infections are accompanied by a prominent type I IFN response involving similar downstream mechanisms as in DM. Aiming to elucidate the pathogenesis of DM in skeletal muscle tissue, we used deep RNA sequencing and a host depletion approach to detect possible causative viruses.

4.
Clin Pharmacol Drug Dev ; 13(2): 208-218, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38185925

RESUMEN

Tirbanibulin ointment 1% is approved in the United States and Europe for the treatment of actinic keratosis with demonstrated efficacy, safety, and tolerability when applied over a field up to 25 cm2 . This Phase 1 maximal-use trial determines the plasma pharmacokinetics, safety, and tolerability of tirbanibulin ointment 1% applied to 100 cm2 of the face or balding scalp in adults with actinic keratosis. Twenty-eight patients self-applied tirbanibulin once daily for a single 5-day treatment course. On Day 5, the mean maximum plasma concentration was 1.06 ng/mL and area under the plasma concentration-time curve during a dosing interval was 16.2 ng â€¢ h/mL. Systemic exposure was approximately 4-fold higher than in a previous pharmacokinetic study with a 25 cm2 field, consistent with the increase in the treated area. Tirbanibulin applied to a 100-cm2 treatment field showed favorable safety and tolerability. The most common treatment-emergent adverse events were application site reactions (in 35.7% of patients). All treatment-emergent adverse events and most of the tolerability signs were mild/moderate and resolved or returned to baseline by Day 29. In summary, under maximal-use conditions, tirbanibulin ointment 1% was safe and well tolerated supporting its potential use over a field up to 100 cm2 .


Asunto(s)
Acetamidas , Queratosis Actínica , Morfolinas , Piridinas , Adulto , Humanos , Queratosis Actínica/tratamiento farmacológico , Queratosis Actínica/diagnóstico , Pomadas , Resultado del Tratamiento , Europa (Continente)
5.
Comput Inform Nurs ; 42(3): 199-206, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38206171

RESUMEN

Paramount to patient safety is the ability for nurses to make clinical decisions free from human error. Yet, the dynamic clinical environment in which nurses work is characterized by uncertainty, urgency, and high consequence, necessitating that nurses make quick and critical decisions. The aim of this study was to examine the influence of human and environmental factors on the decision to administer among new graduate nurses in response to alert generation during bar code-assisted medication administration. The design for this study was a descriptive, longitudinal, observational cohort design using EHR audit log and administrative data. The study was set at a large, urban medical center in the United States and included 132 new graduate nurses who worked on adult, inpatient units. Research variables included human and environmental factors. Data analysis included descriptive and inferential analyses. This study found that participants continued with administration of a medication in 90.75% of alert encounters. When considering the response to an alert, residency cohort, alert category, and previous exposure variables were associated with the decision to proceed with administration. It is important to continue to study factors that influence nurses' decision-making, particularly during the process of medication administration, to improve patient safety and outcomes.


Asunto(s)
Educación de Postgrado en Enfermería , Adulto , Humanos , Análisis de Datos , Hospitales , Pacientes Internos , Seguridad del Paciente
6.
Euro Surveill ; 29(2)2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38214083

RESUMEN

Variant BA.2.86 and its descendant, JN.1, of SARS-CoV-2 are rising in incidence across Europe and globally. We isolated recent JN.1, BA.2.86, EG.5, XBB.1.5 and earlier variants. We tested live virus neutralisation of sera taken in September 2023 from vaccinated and exposed healthy persons (n = 39). We found clear neutralisation escape against recent variants but no specific pronounced escape for BA.2.86 or JN.1. Neutralisation escape corresponds to recent variant predominance but may not be causative of the recent upsurge in JN.1 incidence.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Europa (Continente)/epidemiología , Estado de Salud , Anticuerpos Antivirales , Anticuerpos Neutralizantes
7.
J Nurs Adm ; 54(2): 102-110, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38261641

RESUMEN

OBJECTIVE: This study examined how frontline nurse managers (FLNMs) perceive and experience formal and informal social support and how personal factors and social support relate to their transformational leadership (TL) behaviors. BACKGROUND: Ineffective leadership by FLNMs is associated with costly outcomes. Evidence suggests that leadership development is a function of personal and social factors; however, a better understanding of this process is needed. METHODS: A convergent mixed-methods design was used. The quantitative strand included a cross-sectional survey in a sample of FLNMs. The qualitative strand used a semistructured interview and a descriptive qualitative approach with a subset of this sample. RESULTS: Formal and informal social support is positively related to the TL behaviors of FLNMs as evidenced by the convergent data. The influence of family members in the work-related decisions of FLNMs has been underreported in the literature and is an area for consideration in supporting retention and desired leadership behaviors. CONCLUSION: The findings of this study imply a need for organizations to establish systems that endorse the growth of FLNMS, create opportunities for career advancement, and integrate members of the FLNMs' personal support systems into recognition initiatives.


Asunto(s)
Acidosis Láctica , Enfermeras Administradoras , Humanos , Estudios Transversales , Liderazgo , Apoyo Social
8.
Comput Inform Nurs ; 42(2): 94-103, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38062552

RESUMEN

The aim of this study was to describe medication administration and alert patterns among a cohort of new graduate nurses over the first year of practice. Medical errors related to clinical decision-making, including medication administration errors, may occur more frequently among new graduate nurses. To better understand nursing workflow and documentation workload in today's clinical environment, it is important to understand patterns of medication administration and alert generation during barcode-assisted medication administration. Study objectives were addressed through a descriptive, longitudinal, observational cohort design using secondary data analysis. Set in a large, urban medical center in the United States, the study sample included 132 new graduate nurses who worked on adult, inpatient units and administered medication using barcode-assisted medication administration. Data were collected through electronic health record and administration sources. New graduate nurses in the sample experienced a total of 587 879 alert and medication administration encounters, administering 772 unique medications to 17 388 unique patients. Nurses experienced an average medication workload of 28.09 medications per shift, 3.98% of which were associated with alerts, over their first year of practice. In addition to high volume of medication administration, new graduate nurses administer many different types of medications and are exposed to numerous alerts while using barcode-assisted medication administration.


Asunto(s)
Educación de Postgrado en Enfermería , Errores de Medicación , Adulto , Humanos , Documentación , Registros Electrónicos de Salud , Errores de Medicación/prevención & control , Preparaciones Farmacéuticas , Estudios Longitudinales , Estudios de Cohortes
9.
Virol J ; 20(1): 257, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37940989

RESUMEN

BACKGROUND: Intrinsic fitness costs are likely to have guided the selection of lineage-determining mutations during emergence of variants of SARS-CoV-2. Whereas changes in receptor affinity and antibody neutralization have been thoroughly mapped for individual mutations in spike, their influence on intrinsic replicative fitness remains understudied. METHODS: We analyzed mutations in immunodominant spike epitope E484 that became temporarily fixed over the pandemic. We engineered the resulting immune escape mutations E484K, -A, and -Q in recombinant SARS-CoV-2. We characterized viral replication, entry, and competitive fitness with and without immune serum from humans with defined exposure/vaccination history and hamsters monospecifically infected with the E484K variant. We additionally engineered a virus containing the Omicron signature mutations N501Y and Q498R that were predicted to epistatically enhance receptor binding. RESULTS: Multistep growth kinetics in Vero-, Calu-3, and NCI-H1299 were identical between viruses. Synchronized entry experiments based on cold absorption and temperature shift identified only an insignificant trend toward faster entry of the E484K variant. Competitive passage experiments revealed clear replicative fitness differences. In absence of immune serum, E484A and E484Q, but not E484K, were replaced by wildtype (WT) in competition assays. In presence of immune serum, all three mutants outcompeted WT. Decreased E484A fitness levels were over-compensated for by N501Y and Q498R, identifying a putative Omicron founder background that exceeds the intrinsic and effective fitness of WT and matches that of E484K. Critically, the E484A/Q498R/N501Y mutant and E484K have equal fitness also in presence of pre-Omicron vaccinee serum, whereas the fitness gain by E484K is lost in the presence of serum raised against the E484K variant in hamsters. CONCLUSIONS: The emergence of E484A and E484Q prior to widespread population immunity may have been limited by fitness costs. In populations already exposed to the early immune escape epitope E484K, the Omicron founder background may have provided a basis for alternative immune escape evolution via E484A. Studies of major antigenic epitope changes with and without their epistatic context help reconstruct the sequential adjustments of intrinsic fitness versus neutralization escape during the evolution of major SARS-CoV-2 variants in an increasingly immune human population.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Cricetinae , Humanos , Epítopos/genética , SARS-CoV-2/genética , Mutación , Sueros Inmunes , Epítopos Inmunodominantes , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Neutralizantes
10.
Prostate Cancer ; 2023: 6641707, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37885823

RESUMEN

Background: Androgen deprivation therapy (ADT) for prostate cancer is implicated as a possible cause of cognitive impairment (CI). CI in dementia and Alzheimer's disease is associated with neuroinflammation. In this study, we investigated a potential role of neuroinflammation in ADT-related CI. Methods: Patients with prostate cancer on ADT for ≥3 months were categorized as having ADT-emergent CI or normal cognition (NC) based on self-report at interview. Neuroinflammation was evaluated using positron emission tomography (PET) with the translocator protein (TSPO) radioligand [11C]-PBR28. [11C]-PBR28 uptake in various brain regions was quantified as standardized uptake value (SUVR, normalized to cerebellum) and related to blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI) choice-reaction time task (CRT) activation maps. Results: Eleven patients underwent PET: four with reported CI (rCI), six with reported NC (rNC), and one status unrecorded. PET did not reveal any between-group differences in SUVR regionally or globally. There was no difference between groups on brain activation to the CRT. Regardless of the reported cognitive status, there was strong correlation between PET-TSPO signal and CRT activation in the hippocampus, amygdala, and medial cortex. Conclusions: We found no difference in neuroinflammation measured by PET-TSPO between patients with rCI and rNC. However, we speculate that the strong correlation between TSPO uptake and BOLD-fMRI activation in brain regions involved in memory and known to have high androgen-receptor expression mediating plasticity (hippocampus and amygdala) might reflect inflammatory effects of ADT with compensatory upregulated/increased synaptic functions. Further studies of this imaging readout are warranted to investigate ADT-related CI.

11.
Viruses ; 15(10)2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37896809

RESUMEN

The 2023 International Virus Bioinformatics Meeting was held in Valencia, Spain, from 24-26 May 2023, attracting approximately 180 participants worldwide. The primary objective of the conference was to establish a dynamic scientific environment conducive to discussion, collaboration, and the generation of novel research ideas. As the first in-person event following the SARS-CoV-2 pandemic, the meeting facilitated highly interactive exchanges among attendees. It served as a pivotal gathering for gaining insights into the current status of virus bioinformatics research and engaging with leading researchers and emerging scientists. The event comprised eight invited talks, 19 contributed talks, and 74 poster presentations across eleven sessions spanning three days. Topics covered included machine learning, bacteriophages, virus discovery, virus classification, virus visualization, viral infection, viromics, molecular epidemiology, phylodynamic analysis, RNA viruses, viral sequence analysis, viral surveillance, and metagenomics. This report provides rewritten abstracts of the presentations, a summary of the key research findings, and highlights shared during the meeting.


Asunto(s)
Bacteriófagos , Virus ARN , Virosis , Virus , Humanos , Biología Computacional , Virus/genética
12.
bioRxiv ; 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37808679

RESUMEN

The antigenic evolution of SARS-CoV-2 requires ongoing monitoring to judge the immune escape of newly arising variants. A surveillance system necessitates an understanding of differences in neutralization titers measured in different assays and using human and animal sera. We compared 18 datasets generated using human, hamster, and mouse sera, and six different neutralization assays. Titer magnitude was lowest in human, intermediate in hamster, and highest in mouse sera. Fold change, immunodominance patterns and antigenic maps were similar among sera. Most assays yielded similar results, except for differences in fold change in cytopathic effect assays. Not enough data was available for conclusively judging mouse sera, but hamster sera were a consistent surrogate for human first-infection sera.

13.
Sci Adv ; 9(41): eadh7968, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37824612

RESUMEN

With most of the T cells residing in the tissue, not the blood, developing noninvasive methods for in vivo quantification of their biodistribution and kinetics is important for studying their role in immune response and memory. This study presents the first use of dynamic positron emission tomography (PET) and kinetic modeling for in vivo measurement of CD8+ T cell biodistribution in humans. A 89Zr-labeled CD8-targeted minibody (89Zr-Df-Crefmirlimab) was used with total-body PET in healthy individuals (N = 3) and coronavirus disease 2019 (COVID-19) convalescent patients (N = 5). Kinetic modeling results aligned with T cell-trafficking effects expected in lymphoid organs. Tissue-to-blood ratios from the first 7 hours of imaging were higher in bone marrow of COVID-19 convalescent patients compared to controls, with an increasing trend between 2 and 6 months after infection, consistent with modeled net influx rates and peripheral blood flow cytometry analysis. These results provide a promising platform for using dynamic PET to study the total-body immune response and memory.


Asunto(s)
COVID-19 , Humanos , Distribución Tisular , COVID-19/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Linfocitos T CD8-positivos , Circonio , Línea Celular Tumoral
14.
Emerg Infect Dis ; 29(12): 2524-2527, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37796297

RESUMEN

Hepatitis A virus (HAV) is a common human pathogen found exclusively in primates. In a molecular and serologic study of 64 alpacas in Bolivia, we detected RNA of distinct HAV in ≈9% of animals and HAV antibodies in ≈64%. Complete-genome analysis suggests a long association of HAV with alpacas.


Asunto(s)
Camélidos del Nuevo Mundo , Virus de la Hepatitis A , Animales , Humanos , Virus de la Hepatitis A/genética , Bolivia/epidemiología , Genotipo , ARN
15.
Science ; 382(6666): eadj0070, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37797027

RESUMEN

During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, multiple variants escaping preexisting immunity emerged, causing reinfections of previously exposed individuals. Here, we used antigenic cartography to analyze patterns of cross-reactivity among 21 variants and 15 groups of human sera obtained after primary infection with 10 different variants or after messenger RNA (mRNA)-1273 or mRNA-1273.351 vaccination. We found antigenic differences among pre-Omicron variants caused by substitutions at spike-protein positions 417, 452, 484, and 501. Quantifying changes in response breadth over time and with additional vaccine doses, our results show the largest increase between 4 weeks and >3 months after a second dose. We found changes in immunodominance of different spike regions, depending on the variant an individual was first exposed to, with implications for variant risk assessment and vaccine-strain selection.


Asunto(s)
Antígenos Virales , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunas de ARNm , Humanos , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Reacciones Cruzadas , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Antígenos Virales/genética , Antígenos Virales/inmunología , Vacunas de ARNm/inmunología , Vacunación , Sustitución de Aminoácidos
16.
PLoS Pathog ; 19(9): e1011657, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37747932

RESUMEN

Inhibitors of bromodomain and extra-terminal proteins (iBETs), including JQ-1, have been suggested as potential prophylactics against SARS-CoV-2 infection. However, molecular mechanisms underlying JQ-1-mediated antiviral activity and its susceptibility to viral subversion remain incompletely understood. Pretreatment of cells with iBETs inhibited infection by SARS-CoV-2 variants and SARS-CoV, but not MERS-CoV. The antiviral activity manifested itself by reduced reporter expression of recombinant viruses, and reduced viral RNA quantities and infectious titers in the culture supernatant. While we confirmed JQ-1-mediated downregulation of expression of angiotensin-converting enzyme 2 (ACE2) and interferon-stimulated genes (ISGs), multi-omics analysis addressing the chromatin accessibility, transcriptome and proteome uncovered induction of an antiviral nuclear factor erythroid 2-related factor 2 (NRF-2)-mediated cytoprotective response as an additional mechanism through which JQ-1 inhibits SARS-CoV-2 replication. Pharmacological inhibition of NRF-2, and knockdown of NRF-2 and its target genes reduced JQ-1-mediated inhibition of SARS-CoV-2 replication. Serial passaging of SARS-CoV-2 in the presence of JQ-1 resulted in predominance of ORF6-deficient variant, which exhibited resistance to JQ-1 and increased sensitivity to exogenously administered type I interferon (IFN-I), suggesting a minimised need for SARS-CoV-2 ORF6-mediated repression of IFN signalling in the presence of JQ-1. Importantly, JQ-1 exhibited a transient antiviral activity when administered prophylactically in human airway bronchial epithelial cells (hBAECs), which was gradually subverted by SARS-CoV-2, and no antiviral activity when administered therapeutically following an established infection. We propose that JQ-1 exerts pleiotropic effects that collectively induce an antiviral state in the host, which is ultimately nullified by SARS-CoV-2 infection, raising questions about the clinical suitability of the iBETs in the context of COVID-19.


Asunto(s)
COVID-19 , Interferón Tipo I , Humanos , SARS-CoV-2/metabolismo , Interferón Tipo I/farmacología , Proteínas Virales/metabolismo , Antivirales/farmacología
17.
J Clin Virol ; 168: 105583, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37716229

RESUMEN

BACKGROUND: Hepatitis E virus (HEV) is a leading cause of acute hepatitis and can cause chronic infections in immunocompromised patients. Although HEV infections can be treated with ribavirin, antiviral efficacy is hampered by resistance mutations, normally detected by virus sequencing. OBJECTIVES: High-throughput sequencing (HTS) allows for cost-effective complete viral genome sequencing. This enables the discovery and delineation of new subtypes, and revised the recognition of quasispecies and putative resistance mutations. However, HTS is challenged by factors including low viral load, sample degradation, high host background, and high viral diversity. STUDY DESIGN: We apply complete genome sequencing strategies for HEV, including a targeted enrichment approach. These approaches were used to investigate sequence diversity in HEV RNA-positive animal and human samples and intra-host diversity in a chronically infected patient. RESULTS: Here, we describe the identification of potential novel subtypes in a blood donation (genotype 3) and in an ancient livestock sample (genotype 7). In a chronically infected patient, we successfully investigated intra-host virus diversity, including the presence of ribavirin resistance mutations. Furthermore, we found convincing evidence for HEV compartmentalization, including the central nervous system, in this patient. CONCLUSIONS: Targeted enrichment of viral sequences enables the generation of complete genome sequences from a variety of difficult sample materials. Moreover, it enables the generation of greater sequence coverage allowing more advanced analyses. This is key for a better understanding of virus diversity. Investigation of existing ribavirin resistance, in the context of minorities or compartmentalization, may be critical in treatment strategies of HEV patients.


Asunto(s)
Virus de la Hepatitis E , Hepatitis E , Animales , Humanos , Virus de la Hepatitis E/genética , Ribavirina/farmacología , Ribavirina/uso terapéutico , Antivirales/efectos adversos , Infección Persistente , Genotipo , Secuenciación Completa del Genoma
18.
J Nucl Med ; 64(11): 1821-1830, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37591539

RESUMEN

Conventional whole-body static 18F-FDG PET imaging provides a semiquantitative evaluation of overall glucose metabolism without insight into the specific transport and metabolic steps. Here we demonstrate the ability of total-body multiparametric 18F-FDG PET to quantitatively evaluate glucose metabolism using macroparametric quantification and assess specific glucose delivery and phosphorylation processes using microparametric quantification for studying recovery from coronavirus disease 2019 (COVID-19). Methods: The study included 13 healthy subjects and 12 recovering COVID-19 subjects within 8 wk of confirmed diagnosis. Each subject had a 1-h dynamic 18F-FDG scan on the uEXPLORER total-body PET/CT system. Semiquantitative SUV and the SUV ratio relative to blood (SUVR) were calculated for different organs to measure glucose utilization. Tracer kinetic modeling was performed to quantify the microparametric blood-to-tissue 18F-FDG delivery rate [Formula: see text] and the phosphorylation rate k 3, as well as the macroparametric 18F-FDG net influx rate ([Formula: see text]). Statistical tests were performed to examine differences between healthy subjects and recovering COVID-19 subjects. The effect of COVID-19 vaccination was also investigated. Results: We detected no significant difference in lung SUV but significantly higher lung SUVR and [Formula: see text] in COVID-19 recovery, indicating improved sensitivity of kinetic quantification for detecting the difference in glucose metabolism. A significant difference was also observed in the lungs with the phosphorylation rate k 3 but not with [Formula: see text], which suggests that glucose phosphorylation, rather than glucose delivery, drives the observed difference of glucose metabolism. Meanwhile, there was no or little difference in bone marrow 18F-FDG metabolism measured with SUV, SUVR, and [Formula: see text] but a significantly higher bone marrow [Formula: see text] in the COVID-19 group, suggesting a difference in glucose delivery. Vaccinated COVID-19 subjects had a lower lung [Formula: see text] and a higher spleen [Formula: see text] than unvaccinated COVID-19 subjects. Conclusion: Higher lung glucose metabolism and bone marrow glucose delivery were observed with total-body multiparametric 18F-FDG PET in recovering COVID-19 subjects than in healthy subjects, implying continued inflammation during recovery. Vaccination demonstrated potential protection effects. Total-body multiparametric PET of 18F-FDG can provide a more sensitive tool and more insights than conventional whole-body static 18F-FDG imaging to evaluate metabolic changes in systemic diseases such as COVID-19.


Asunto(s)
COVID-19 , Fluorodesoxiglucosa F18 , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Vacunas contra la COVID-19 , COVID-19/diagnóstico por imagen , Glucosa , Tomografía de Emisión de Positrones/métodos
19.
Am J Physiol Endocrinol Metab ; 325(3): E207-E213, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37467021

RESUMEN

Individuals with insulin resistance and obesity display higher skeletal muscle production of nonoxidized glycolytic products (i.e., lactate), and lower complete mitochondrial substrate oxidation to CO2. These findings have also been observed in individuals without obesity and are associated with an increased risk for metabolic disease. The purpose of this study was to determine if substrate preference is evident at the earliest stage of life (birth) and to provide a clinical blood marker (lactate) that could be indicative of a predisposition for metabolic disease later. We used radiolabeled tracers to assess substrate oxidation and insulin sensitivity of myogenically differentiated mesenchymal stem cells (MSCs), a proxy of infant skeletal muscle tissue, derived from umbilical cords of full-term infants. We found that greater production of nonoxidized glycolytic products (lactate, pyruvate, alanine) is directly proportional to lower substrate oxidation and insulin sensitivity in MSCs. In addition, we found an inverse relationship between the ratio of complete glucose oxidation to CO2 and infant blood lactate at 1 mo of age. Collectively, considering that higher lactate was associated with lower MSC glucose oxidation and has been shown to be implicated with metabolic disease, it may be an early indicator of infant skeletal muscle phenotype.NEW & NOTEWORTHY In infant myogenically differentiated mesenchymal stem cells, greater production of nonoxidized glycolytic products was directly proportional to lower substrate oxidation and insulin resistance. Glucose oxidation was inversely correlated with infant blood lactate. This suggests that innate differences in infant substrate oxidation exist at birth and could be associated with the development of metabolic disease later in life. Clinical assessment of infant blood lactate could be used as an early indicator of skeletal muscle phenotype.


Asunto(s)
Resistencia a la Insulina , Células Madre Mesenquimatosas , Humanos , Dióxido de Carbono , Glucólisis/fisiología , Glucosa/metabolismo , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Ácido Láctico/metabolismo , Ácido Pirúvico/metabolismo , Células Madre Mesenquimatosas/metabolismo , Insulina/metabolismo
20.
Virus Evol ; 9(1): vead024, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37091898

RESUMEN

Adenoviruses (AdVs) are important human and animal pathogens and are frequently used as vectors for gene therapy and vaccine delivery. Surprisingly, there are only scant data regarding primate AdV origin and evolution, especially in the most basal primate hosts. We detect and sequence AdVs from faeces of two Madagascan lemur species. Complete genome sequence analyses define a new AdV species with a particularly large gene encoding a protein of unknown function in the early gene region 3. Unexpectedly, the new AdV species is not most similar to human or other simian AdVs but to bat adenovirus C. Genome characterisation shows signals of virus-host codivergence in non-structural genes, which show lower diversity than structural genes. Outside a lemur species mixing zone, recombination less frequently separates structural genes, as in human adenovirus C. The evolutionary history of lemur AdVs likely involves both a host switch and codivergence with the lemur hosts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...