Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Am J Respir Crit Care Med ; 209(7): 871-878, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38306669

RESUMEN

Rationale: The epidemiology, management, and outcomes of acute respiratory distress syndrome (ARDS) differ between children and adults, with lower mortality rates in children despite comparable severity of hypoxemia. However, the relationship between age and mortality is unclear.Objective: We aimed to define the association between age and mortality in ARDS, hypothesizing that it would be nonlinear.Methods: We performed a retrospective cohort study using data from two pediatric ARDS observational cohorts (n = 1,236), multiple adult ARDS trials (n = 5,547), and an adult observational ARDS cohort (n = 1,079). We aligned all datasets to meet Berlin criteria. We performed unadjusted and adjusted logistic regression using fractional polynomials to assess the potentially nonlinear relationship between age and 90-day mortality, adjusting for sex, PaO2/FiO2, immunosuppressed status, year of study, and observational versus randomized controlled trial, treating each individual study as a fixed effect.Measurements and Main Results: There were 7,862 subjects with median ages of 4 years in the pediatric cohorts, 52 years in the adult trials, and 61 years in the adult observational cohort. Most subjects (43%) had moderate ARDS by Berlin criteria. Ninety-day mortality was 19% in the pediatric cohorts, 33% in the adult trials, and 67% in the adult observational cohort. We found a nonlinear relationship between age and mortality, with mortality risk increasing at an accelerating rate between 11 and 65 years of age, after which mortality risk increased more slowly.Conclusions: There was a nonlinear relationship between age and mortality in pediatric and adult ARDS.


Asunto(s)
Hipoxia , Síndrome de Dificultad Respiratoria , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Humanos , Persona de Mediana Edad , Adulto Joven , Algoritmos , Mortalidad Hospitalaria , Síndrome de Dificultad Respiratoria/terapia , Estudios Retrospectivos
3.
Intensive Care Med ; 49(8): 957-965, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37470831

RESUMEN

PURPOSE: Exposures to ambient air pollutants may prime the lung enhancing risk of acute respiratory distress syndrome (ARDS) in sepsis. Our objective was to determine the association of short-, medium-, and long-term pollutant exposures and ARDS risk in critically ill sepsis patients. METHODS: We analyzed a prospective cohort of 1858 critically ill patients with sepsis, and estimated short- (3 days), medium- (6 weeks), and long- (5 years) term exposures to ozone, nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), particulate matter < 2.5 µm (PM2.5), and PM < 10 µm (PM10) using weighted averages of daily levels from monitors within 50 km of subjects' residences. Subjects were followed for 6 days for ARDS by the Berlin Criteria. The association between each pollutant and ARDS was determined using multivariable logistic regression adjusting for preselected confounders. In 764 subjects, we measured plasma concentrations of inflammatory proteins at presentation and tested for an association between pollutant exposure and protein concentration via linear regression. RESULTS: ARDS developed in 754 (41%) subjects. Short- and long-term exposures to SO2, NO2, and PM2.5 were associated with ARDS risk (SO2: odds ratio (OR) for the comparison of the 75-25th long-term exposure percentile 1.43 (95% confidence interval (CI) 1.16, 1.77); p < 0.01; NO2: 1.36 (1.06, 1.74); p = 0.04, PM2.5: 1.21 (1.04, 1.41); p = 0.03). Long-term exposures to these three pollutants were also associated with plasma interleukin-1 receptor antagonist and soluble tumor necrosis factor receptor-1 concentrations. CONCLUSION: Short and long-term exposures to ambient SO2, PM2.5, and NO2 are associated with increased ARDS risk in sepsis, representing potentially modifiable environmental risk factors for sepsis-associated ARDS.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Ambientales , Síndrome de Dificultad Respiratoria , Sepsis , Humanos , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Dióxido de Nitrógeno/efectos adversos , Dióxido de Nitrógeno/análisis , Estudios Prospectivos , Enfermedad Crítica , Material Particulado/efectos adversos , Material Particulado/análisis , Síndrome de Dificultad Respiratoria/etiología , Sepsis/complicaciones
5.
Crit Care Explor ; 4(12): e0800, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36479446

RESUMEN

COVID-19 is a heterogenous disease. Biomarker-based approaches may identify patients at risk for severe disease, who may be more likely to benefit from specific therapies. Our objective was to identify and validate a plasma protein signature for severe COVID-19. DESIGN: Prospective observational cohort study. SETTING: Two hospitals in the United States. PATIENTS: One hundred sixty-seven hospitalized adults with COVID-19. INTERVENTION: None. MEASUREMENTS AND MAIN RESULTS: We measured 713 plasma proteins in 167 hospitalized patients with COVID-19 using a high-throughput platform. We classified patients as nonsevere versus severe COVID-19, defined as the need for high-flow nasal cannula, mechanical ventilation, extracorporeal membrane oxygenation, or death, at study entry and in 7-day intervals thereafter. We compared proteins measured at baseline between these two groups by logistic regression adjusting for age, sex, symptom duration, and comorbidities. We used lead proteins from dysregulated pathways as inputs for elastic net logistic regression to identify a parsimonious signature of severe disease and validated this signature in an external COVID-19 dataset. We tested whether the association between corticosteroid use and mortality varied by protein signature. One hundred ninety-four proteins were associated with severe COVID-19 at the time of hospital admission. Pathway analysis identified multiple pathways associated with inflammatory response and tissue repair programs. Elastic net logistic regression yielded a 14-protein signature that discriminated 90-day mortality in an external cohort with an area under the receiver-operator characteristic curve of 0.92 (95% CI, 0.88-0.95). Classifying patients based on the predicted risk from the signature identified a heterogeneous response to treatment with corticosteroids (p = 0.006). CONCLUSIONS: Inpatients with COVID-19 express heterogeneous patterns of plasma proteins. We propose a 14-protein signature of disease severity that may have value in developing precision medicine approaches for COVID-19 pneumonia.

6.
Crit Care ; 26(1): 341, 2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36335405

RESUMEN

BACKGROUND: Sepsis is a severe systemic inflammatory response to infections that is accompanied by organ dysfunction and has a high mortality rate in adult intensive care units. Most genetic studies have identified gene variants associated with development and outcomes of sepsis focusing on biological candidates. We conducted the first genome-wide association study (GWAS) of 28-day survival in adult patients with sepsis. METHODS: This study was conducted in two stages. The first stage was performed on 687 European sepsis patients from the GEN-SEP network and 7.5 million imputed variants. Association testing was conducted with Cox regression models, adjusting by sex, age, and the main principal components of genetic variation. A second stage focusing on the prioritized genetic variants was performed on 2,063 ICU sepsis patients (1362 European Americans and 701 African-Americans) from the MESSI study. A meta-analysis of results from the two stages was conducted and significance was established at p < 5.0 × 10-8. Whole-blood transcriptomic, functional annotations, and sensitivity analyses were evaluated on the identified genes and variants. FINDINGS: We identified three independent low-frequency variants associated with reduced 28-day sepsis survival, including a missense variant in SAMD9 (hazard ratio [95% confidence interval] = 1.64 [1.37-6.78], p = 4.92 × 10-8). SAMD9 encodes a possible mediator of the inflammatory response to tissue injury. INTERPRETATION: We performed the first GWAS of 28-day sepsis survival and identified novel variants associated with reduced survival. Larger sample size studies are needed to better assess the genetic effects in sepsis survival and to validate the findings.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sepsis , Adulto , Humanos , Estudio de Asociación del Genoma Completo/métodos , Población Blanca , Sepsis/genética , Negro o Afroamericano , Polimorfismo de Nucleótido Simple , Péptidos y Proteínas de Señalización Intracelular/genética
7.
Intensive Care Med ; 48(9): 1144-1155, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35833959

RESUMEN

PURPOSE: Although dozens of studies have associated vancomycin + piperacillin-tazobactam with increased acute kidney injury (AKI) risk, it is unclear whether the association represents true injury or a pseudotoxicity characterized by isolated effects on creatinine secretion. We tested this hypothesis by contrasting changes in creatinine concentration after antibiotic initiation with changes in cystatin C concentration, a kidney biomarker unaffected by tubular secretion. METHODS: We included patients enrolled in the Molecular Epidemiology of SepsiS in the ICU (MESSI) prospective cohort who were treated for ≥ 48 h with vancomycin + piperacillin-tazobactam or vancomycin + cefepime. Kidney function biomarkers [creatinine, cystatin C, and blood urea nitrogen (BUN)] were measured before antibiotic treatment and at day two after initiation. Creatinine-defined AKI and dialysis were examined through day-14, and mortality through day-30. Inverse probability of treatment weighting was used to adjust for confounding. Multiple imputation was used to impute missing baseline covariates. RESULTS: The study included 739 patients (vancomycin + piperacillin-tazobactam n = 297, vancomycin + cefepime n = 442), of whom 192 had cystatin C measurements. Vancomycin + piperacillin-tazobactam was associated with a higher percentage increase of creatinine at day-two 8.04% (95% CI 1.21, 15.34) and higher incidence of creatinine-defined AKI: rate ratio (RR) 1.34 (95% CI 1.01, 1.78). In contrast, vancomycin + piperacillin-tazobactam was not associated with change in alternative biomarkers: cystatin C: - 5.63% (95% CI - 18.19, 8.86); BUN: - 4.51% (95% CI - 12.83, 4.59); or clinical outcomes: dialysis: RR 0.63 (95% CI 0.31, 1.29); mortality: RR 1.05 (95%CI 0.79, 1.41). CONCLUSIONS: Vancomycin + piperacillin-tazobactam was associated with creatinine-defined AKI, but not changes in alternative kidney biomarkers, dialysis, or mortality, supporting the hypothesis that vancomycin + piperacillin-tazobactam effects on creatinine represent pseudotoxicity.


Asunto(s)
Lesión Renal Aguda , Antibacterianos , Combinación Piperacilina y Tazobactam , Vancomicina , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/epidemiología , Adulto , Antibacterianos/efectos adversos , Biomarcadores , Cefepima/efectos adversos , Creatinina/sangre , Enfermedad Crítica/terapia , Cistatina C/sangre , Quimioterapia Combinada , Humanos , Ácido Penicilánico/efectos adversos , Combinación Piperacilina y Tazobactam/efectos adversos , Estudios Prospectivos , Diálisis Renal , Estudios Retrospectivos , Vancomicina/efectos adversos
8.
Transl Res ; 244: 56-74, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35181549

RESUMEN

The cortactin gene (CTTN), encoding an actin-binding protein critically involved in cytoskeletal dynamics and endothelial cell (EC) barrier integrity, contains single nucleotide polymorphisms (SNPs) associated with severe asthma in Black patients. As loss of lung EC integrity is a major driver of mortality in the Acute Respiratory Distress Syndrome (ARDS), sepsis, and the acute chest syndrome (ACS), we speculated CTTN SNPs that alter EC barrier function will associate with clinical outcomes from these types of conditions in Black patients. In case-control studies, evaluation of a nonsynonymous CTTN coding SNP Ser484Asn (rs56162978, G/A) in a severe sepsis cohort (725 Black subjects) revealed significant association with increased risk of sepsis mortality. In a separate cohort of sickle cell disease (SCD) subjects with and without ACS (177 SCD Black subjects), significantly increased risk of ACS and increased ACS severity (need for mechanical ventilation) was observed in carriers of the A allele. Human lung EC expressing the cortactin S484N transgene exhibited: (i) delayed EC barrier recovery following thrombin-induced permeability; (ii) reduced levels of critical Tyr486 cortactin phosphorylation; (iii) inhibited binding to the cytoskeletal regulator, nmMLCK; and (iv) attenuated EC barrier-promoting lamellipodia dynamics and biophysical responses. ARDS-challenged Cttn+/- heterozygous mice exhibited increased lung vascular permeability (compared to wild-type mice) which was significantly attenuated by IV delivery of liposomes encargoed with CTTN WT transgene but not by CTTN S484N transgene. In summary, these studies suggest that the CTTN S484N coding SNP contributes to severity of inflammatory injury in Black patients, potentially via delayed vascular barrier restoration.


Asunto(s)
Síndrome de Dificultad Respiratoria , Sepsis , Animales , Permeabilidad Capilar , Cortactina/genética , Cortactina/metabolismo , Humanos , Pulmón/metabolismo , Ratones , Polimorfismo de Nucleótido Simple , Síndrome de Dificultad Respiratoria/genética , Índice de Severidad de la Enfermedad
9.
Shock ; 57(1): 41-47, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34265829

RESUMEN

BACKGROUND: Matrix Metalloproteinases (MMP) respond to tissue damage during sepsis. Higher plasma concentrations of MMPs and the tissue-inhibitor of matrix metalloproteinases (TIMP) have been reported in sepsis compared with healthy controls. The objective of this study was to examine if plasma levels of MMP-3, MMP-9, and TIMP-1 associate with mortality and organ dysfunction during sepsis. METHODS: We conducted a prospective cohort study of critically ill patients with sepsis adjudicated per Sepsis-3 criteria at a tertiary academic medical center. We measured plasma concentrations of MMP-3, MMP-9, and TIMP-1 on intensive care unit admission. We phenotyped the subjects for shock, acute respiratory distress syndrome (ARDS), acute kidney injury (AKI), and mortality at 30 days. We used logistic regression to test the associations between the MMPs and TIMP-1 with shock, ARDS, AKI, and mortality. RESULTS: Higher plasma TIMP-1 levels were associated with shock (odds ratio [OR] 1.51 per log increase [95% CI 1.25, 1.83]), ARDS (OR 1.24 [95% CI 1.05, 1.46]), AKI (OR 1.18 [95% CI 1.01, 1.38]), and mortality (OR 1.20 [95% CI 1.05, 1.46]. Higher plasma MMP-3 concentrations were associated with shock (OR 1.40 [95% CI 1.12, 1.75]) and mortality (OR 1.24 [95% CI 1.03, 1.48]) whereas MMP-9 levels were not associated with outcomes. Higher plasma TIMP-1 to MMP-3 ratios were associated with shock (OR 1.41 [95% CI 1.15, 1.72], P = 0.02). CONCLUSION: Elevated plasma concentrations of TIMP-1 associate with organ dysfunction and mortality in sepsis. Higher plasma levels of MMP-3 associate with shock and mortality. Plasma MMP and TIMP-1 may warrant further investigation as emerging sepsis theragnostic biomarkers.


Asunto(s)
Metaloproteinasa 3 de la Matriz/sangre , Sepsis/mortalidad , Inhibidor Tisular de Metaloproteinasa-1/sangre , Lesión Renal Aguda/sangre , Anciano , Biomarcadores/sangre , Estudios de Casos y Controles , Estudios de Cohortes , Enfermedad Crítica , Femenino , Humanos , Masculino , Persona de Mediana Edad , Síndrome de Dificultad Respiratoria/sangre , Sepsis/sangre
10.
Nat Med ; 27(7): 1280-1289, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34017137

RESUMEN

Patients with cancer have high mortality from coronavirus disease 2019 (COVID-19), and the immune parameters that dictate clinical outcomes remain unknown. In a cohort of 100 patients with cancer who were hospitalized for COVID-19, patients with hematologic cancer had higher mortality relative to patients with solid cancer. In two additional cohorts, flow cytometric and serologic analyses demonstrated that patients with solid cancer and patients without cancer had a similar immune phenotype during acute COVID-19, whereas patients with hematologic cancer had impairment of B cells and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibody responses. Despite the impaired humoral immunity and high mortality in patients with hematologic cancer who also have COVID-19, those with a greater number of CD8 T cells had improved survival, including those treated with anti-CD20 therapy. Furthermore, 77% of patients with hematologic cancer had detectable SARS-CoV-2-specific T cell responses. Thus, CD8 T cells might influence recovery from COVID-19 when humoral immunity is deficient. These observations suggest that CD8 T cell responses to vaccination might provide protection in patients with hematologic cancer even in the setting of limited humoral responses.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , Neoplasias Hematológicas/inmunología , Neoplasias/inmunología , Anciano , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , COVID-19/complicaciones , COVID-19/mortalidad , Estudios de Cohortes , Femenino , Neoplasias Hematológicas/complicaciones , Humanos , Inmunidad Celular/inmunología , Inmunidad Humoral/inmunología , Inmunofenotipificación , Modelos Logísticos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Neoplasias/complicaciones , Modelos de Riesgos Proporcionales , Estudios Prospectivos , SARS-CoV-2 , Tasa de Supervivencia
11.
Lancet Digit Health ; 3(6): e340-e348, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33893070

RESUMEN

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a common, but under-recognised, critical illness syndrome associated with high mortality. An important factor in its under-recognition is the variability in chest radiograph interpretation for ARDS. We sought to train a deep convolutional neural network (CNN) to detect ARDS findings on chest radiographs. METHODS: CNNs were pretrained on 595 506 radiographs from two centres to identify common chest findings (eg, opacity and effusion), and then trained on 8072 radiographs annotated for ARDS by multiple physicians using various transfer learning approaches. The best performing CNN was tested on chest radiographs in an internal and external cohort, including a subset reviewed by six physicians, including a chest radiologist and physicians trained in intensive care medicine. Chest radiograph data were acquired from four US hospitals. FINDINGS: In an internal test set of 1560 chest radiographs from 455 patients with acute hypoxaemic respiratory failure, a CNN could detect ARDS with an area under the receiver operator characteristics curve (AUROC) of 0·92 (95% CI 0·89-0·94). In the subgroup of 413 images reviewed by at least six physicians, its AUROC was 0·93 (95% CI 0·88-0·96), sensitivity 83·0% (95% CI 74·0-91·1), and specificity 88·3% (95% CI 83·1-92·8). Among images with zero of six ARDS annotations (n=155), the median CNN probability was 11%, with six (4%) assigned a probability above 50%. Among images with six of six ARDS annotations (n=27), the median CNN probability was 91%, with two (7%) assigned a probability below 50%. In an external cohort of 958 chest radiographs from 431 patients with sepsis, the AUROC was 0·88 (95% CI 0·85-0·91). When radiographs annotated as equivocal were excluded, the AUROC was 0·93 (0·92-0·95). INTERPRETATION: A CNN can be trained to achieve expert physician-level performance in ARDS detection on chest radiographs. Further research is needed to evaluate the use of these algorithms to support real-time identification of ARDS patients to ensure fidelity with evidence-based care or to support ongoing ARDS research. FUNDING: National Institutes of Health, Department of Defense, and Department of Veterans Affairs.


Asunto(s)
Aprendizaje Profundo , Redes Neurales de la Computación , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Radiografía Torácica , Síndrome de Dificultad Respiratoria/diagnóstico , Anciano , Algoritmos , Área Bajo la Curva , Conjuntos de Datos como Asunto , Femenino , Hospitales , Humanos , Pulmón/diagnóstico por imagen , Pulmón/patología , Masculino , Persona de Mediana Edad , Cavidad Pleural/diagnóstico por imagen , Cavidad Pleural/patología , Enfermedades Pleurales , Radiografía , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Estudios Retrospectivos , Estados Unidos
12.
Res Sq ; 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33564756

RESUMEN

Cancer patients have increased morbidity and mortality from Coronavirus Disease 2019 (COVID-19), but the underlying immune mechanisms are unknown. In a cohort of 100 cancer patients hospitalized for COVID-19 at the University of Pennsylvania Health System, we found that patients with hematologic cancers had a significantly higher mortality relative to patients with solid cancers after accounting for confounders including ECOG performance status and active cancer status. We performed flow cytometric and serologic analyses of 106 cancer patients and 113 non-cancer controls from two additional cohorts at Penn and Memorial Sloan Kettering Cancer Center. Patients with solid cancers exhibited an immune phenotype similar to non-cancer patients during acute COVID-19 whereas patients with hematologic cancers had significant impairment of B cells and SARS-CoV-2-specific antibody responses. High dimensional analysis of flow cytometric data revealed 5 distinct immune phenotypes. An immune phenotype characterized by CD8 T cell depletion was associated with a high viral load and the highest mortality of 71%, among all cancer patients. In contrast, despite impaired B cell responses, patients with hematologic cancers and preserved CD8 T cells had a lower viral load and mortality. These data highlight the importance of CD8 T cells in acute COVID-19, particularly in the setting of impaired humoral immunity. Further, depletion of B cells with anti-CD20 therapy resulted in almost complete abrogation of SARS-CoV-2-specific IgG and IgM antibodies, but was not associated with increased mortality compared to other hematologic cancers, when adequate CD8 T cells were present. Finally, higher CD8 T cell counts were associated with improved overall survival in patients with hematologic cancers. Thus, CD8 T cells likely compensate for deficient humoral immunity and influence clinical recovery of COVID-19. These observations have important implications for cancer and COVID-19-directed treatments, immunosuppressive therapies, and for understanding the role of B and T cells in acute COVID-19.

14.
Sci Immunol ; 5(49)2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32669287

RESUMEN

Although critical illness has been associated with SARS-CoV-2-induced hyperinflammation, the immune correlates of severe COVID-19 remain unclear. Here, we comprehensively analyzed peripheral blood immune perturbations in 42 SARS-CoV-2 infected and recovered individuals. We identified extensive induction and activation of multiple immune lineages, including T cell activation, oligoclonal plasmablast expansion, and Fc and trafficking receptor modulation on innate lymphocytes and granulocytes, that distinguished severe COVID-19 cases from healthy donors or SARS-CoV-2-recovered or moderate severity patients. We found the neutrophil to lymphocyte ratio to be a prognostic biomarker of disease severity and organ failure. Our findings demonstrate broad innate and adaptive leukocyte perturbations that distinguish dysregulated host responses in severe SARS-CoV-2 infection and warrant therapeutic investigation.


Asunto(s)
Subgrupos de Linfocitos B/inmunología , Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Neutrófilos/inmunología , Neumonía Viral/inmunología , Linfocitos T/inmunología , Anciano , COVID-19 , Selección Clonal Mediada por Antígenos/inmunología , Infecciones por Coronavirus/patología , Citocinas/metabolismo , Femenino , Humanos , Inmunidad Innata/inmunología , Memoria Inmunológica/inmunología , Activación de Linfocitos/inmunología , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/patología , SARS-CoV-2
15.
bioRxiv ; 2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-32511394

RESUMEN

Although critical illness has been associated with SARS-CoV-2-induced hyperinflammation, the immune correlates of severe COVID-19 remain unclear. Here, we comprehensively analyzed peripheral blood immune perturbations in 42 SARS-CoV-2 infected and recovered individuals. We identified broad changes in neutrophils, NK cells, and monocytes during severe COVID-19, suggesting excessive mobilization of innate lineages. We found marked activation within T and B cells, highly oligoclonal B cell populations, profound plasmablast expansion, and SARS-CoV-2-specific antibodies in many, but not all, severe COVID-19 cases. Despite this heterogeneity, we found selective clustering of severe COVID-19 cases through unbiased analysis of the aggregated immunological phenotypes. Our findings demonstrate broad immune perturbations spanning both innate and adaptive leukocytes that distinguish dysregulated host responses in severe SARS-CoV-2 infection and warrant therapeutic investigation. One Sentence Summary: Broad immune perturbations in severe COVID-19.

16.
Lancet Respir Med ; 8(3): 258-266, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31982041

RESUMEN

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a lung inflammatory process caused mainly by sepsis. Most previous studies that identified genetic risks for ARDS focused on candidates with biological relevance. We aimed to identify novel genetic variants associated with ARDS susceptibility and to provide complementary functional evidence of their effect in gene regulation. METHODS: We did a case-control genome-wide association study (GWAS) of 1935 European individuals, using patients with sepsis-associated ARDS as cases and patients with sepsis without ARDS as controls. The discovery stage included 672 patients admitted into a network of Spanish intensive care units between January, 2002, and January, 2017. The replication stage comprised 1345 individuals from two independent datasets from the MESSI cohort study (Sep 22, 2008-Nov 30, 2017; USA) and the VISEP (April 1, 2003-June 30, 2005) and MAXSEP (Oct 1, 2007-March 31, 2010) trials of the SepNet study (Germany). Results from discovery and replication stages were meta-analysed to identify association signals. We then used RNA sequencing data from lung biopsies, in-silico analyses, and luciferase reporter assays to assess the functionallity of associated variants. FINDINGS: We identified a novel genome-wide significant association with sepsis-associated ARDS susceptibility (rs9508032, odds ratio [OR] 0·61, 95% CI 0·41-0·91, p=5·18 × 10-8) located within the Fms-related tyrosine kinase 1 (FLT1) gene, which encodes vascular endothelial growth factor receptor 1 (VEGFR-1). The region containing the sentinel variant and its best proxies acted as a silencer for the FLT1 promoter, and alleles with protective effects in ARDS further reduced promoter activity (p=0·0047). A literature mining of all previously described ARDS genes validated the association of vascular endothelial growth factor A (VEGFA; OR 0·55, 95% CI 0·41-0·73; p=4·69 × 10-5). INTERPRETATION: A common variant within the FLT1 gene is associated with sepsis-associated ARDS. Our findings support a role for the vascular endothelial growth factor signalling pathway in ARDS pathogenesis and identify VEGFR-1 as a potential therapeutic target. FUNDING: Instituto de Salud Carlos III, European Regional Development Funds, Instituto Tecnológico y de Energías Renovables.


Asunto(s)
Síndrome de Dificultad Respiratoria/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Estudios de Casos y Controles , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Síndrome de Dificultad Respiratoria/etiología , Sepsis/complicaciones , Factor A de Crecimiento Endotelial Vascular/genética , Población Blanca
18.
Am J Respir Crit Care Med ; 201(1): 47-56, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31487195

RESUMEN

Rationale: Acute respiratory distress syndrome (ARDS) lacks known causal biomarkers. Plasma concentrations of sRAGE (soluble receptor for advanced glycation end products) strongly associate with ARDS risk. However, whether plasma sRAGE contributes causally to ARDS remains unknown.Objectives: Evaluate plasma sRAGE as a causal intermediate in ARDS by Mendelian randomization (MR), a statistical method to infer causality using observational data.Methods: We measured early plasma sRAGE in two critically ill populations with sepsis. The cohorts were whole-genome genotyped and phenotyped for ARDS. To select validated genetic instruments for MR, we regressed plasma sRAGE on genome-wide genotypes in both cohorts. The causal effect of plasma sRAGE on ARDS was inferred using the top variants with significant associations in both populations (P < 0.01, R2 > 0.02). We applied the inverse variance-weighted method to obtain consistent estimates of the causal effect of plasma sRAGE on ARDS risk.Measurements and Main Results: There were 393 European and 266 African ancestry patients in the first cohort and 843 European ancestry patients in the second cohort. Plasma sRAGE was strongly associated with ARDS risk in both populations (odds ratio, 1.86; 95% confidence interval [1.54-2.25]; 2.56 [2.14-3.06] per log increase). Using genetic instruments common to both populations, plasma sRAGE had a consistent causal effect on ARDS risk with a ß estimate of 0.50 (95% confidence interval [0.09-0.91] per log increase).Conclusions: Plasma sRAGE is genetically regulated during sepsis, and MR analysis indicates that increased plasma sRAGE leads to increased ARDS risk, suggesting plasma sRAGE acts as a causal intermediate in sepsis-related ARDS.


Asunto(s)
Biomarcadores/sangre , Receptor para Productos Finales de Glicación Avanzada/genética , Síndrome de Dificultad Respiratoria/sangre , Síndrome de Dificultad Respiratoria/fisiopatología , Sepsis/sangre , Sepsis/genética , Adulto , Anciano , Anciano de 80 o más Años , Población Negra/genética , Estudios de Cohortes , Enfermedad Crítica , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Sepsis/fisiopatología , Población Blanca/genética
20.
Intensive Care Med ; 44(11): 1849-1858, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30343317

RESUMEN

PURPOSE: A causal biomarker for acute respiratory distress syndrome (ARDS) could fuel precision therapy options. Plasma angiopoietin-2 (ANG2), a vascular permeability marker, is a strong candidate on the basis of experimental and observational evidence. We used genetic causal inference methods-Mendelian randomization and mediation-to infer potential effects of plasma ANG2. METHODS: We genotyped 703 septic subjects, measured ICU admission plasma ANG2, and performed a quantitative trait loci (QTL) analysis to determine variants in the ANGPT2 gene associated with plasma ANG2 (p < 0.005). We then used linear regression and post-estimation analysis to genetically predict plasma ANG2 and tested genetically predicted ANG2 for ARDS association using logistic regression. We estimated the proportion of the genetic effect explained by plasma ANG2 using mediation analysis. RESULTS: Plasma ANG2 was strongly associated with ARDS (OR 1.59 (95% CI 1.35, 1.88) per log). Five ANGPT2 variants were associated with ANG2 in European ancestry subjects (n = 404). Rs2442608C, the most extreme cis QTL (coefficient 0.22, 95% CI 0.09-0.36, p = 0.001), was associated with higher ARDS risk: adjusted OR 1.38 (95% CI 1.01, 1.87), p = 0.042. No significant QTL were identified in African ancestry subjects. Genetically predicted plasma ANG2 was associated with ARDS risk: adjusted OR 2.25 (95% CI 1.06-4.78), p = 0.035. Plasma ANG2 mediated 34% of the rs2442608C-related ARDS risk. CONCLUSIONS: In septic European ancestry subjects, the strongest ANG2-determining ANGPT2 genetic variant is associated with higher ARDS risk. Plasma ANG2 may be a causal factor in ARDS development. Strategies to reduce plasma ANG2 warrant testing to prevent or treat sepsis-associated ARDS.


Asunto(s)
Angiopoyetina 2/sangre , Etnicidad/genética , Síndrome de Dificultad Respiratoria/sangre , Síndrome de Dificultad Respiratoria/etiología , Sepsis/sangre , Población Blanca/genética , Anciano , Angiopoyetina 2/genética , Biomarcadores/sangre , Estudios de Cohortes , Femenino , Humanos , Modelos Logísticos , Masculino , Análisis de la Aleatorización Mendeliana , Persona de Mediana Edad , Sepsis/complicaciones , Sepsis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA