Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Transl Res ; 269: 1-13, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38395390

RESUMEN

While numerous membrane-bound complement inhibitors protect the body's cells from innate immunity's autoaggression, soluble inhibitors like complement factor I (FI) are rarely produced outside the liver. Previously, we reported the expression of FI in non-small cell lung cancer (NSCLC) cell lines. Now, we assessed the content of FI in cancer biopsies from lung cancer patients and associated the results with clinicopathological characteristics and clinical outcomes. Immunohistochemical staining intensity did not correlate with age, smoking status, tumor size, stage, differentiation grade, and T cell infiltrates, but was associated with progression-free survival (PFS), overall survival (OS) and disease-specific survival (DSS). Multivariate Cox analysis of low vs. high FI content revealed HR 0.55, 95 % CI 0.32-0.95, p=0.031 for PFS, HR 0.51, 95 % CI 0.25-1.02, p=0.055 for OS, and HR 0.32, 95 % CI 0.12-0.84, p=0.021 for DSS. Unfavorable prognosis might stem from the non-canonical role of FI, as the staining pattern did not correlate with C4d - the product of FI-supported degradation of active complement component C4b. To elucidate that, we engineered three human NSCLC cell lines naturally expressing FI with CRISPR/Cas9 technology, and compared the transcriptome of FI-deficient and FI-sufficient clones in each cell line. RNA sequencing revealed differentially expressed genes engaged in intracellular signaling pathways controlling proliferation, apoptosis, and responsiveness to growth factors. Moreover, in vitro colony-formation assays showed that FI-deficient cells formed smaller foci than FI-sufficient NSCLC cells, but their size increased when purified FI protein was added to the medium. We postulate that a non-canonical activity of FI influences cellular physiology and contributes to the poor prognosis of lung cancer patients.


Asunto(s)
Factor I de Complemento , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/genética , Masculino , Factor I de Complemento/metabolismo , Factor I de Complemento/genética , Femenino , Persona de Mediana Edad , Línea Celular Tumoral , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Anciano , Pronóstico , Regulación Neoplásica de la Expresión Génica
2.
Blood ; 143(1): 79-91, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37801721

RESUMEN

ABSTRACT: Transfusion-related acute lung injury (TRALI) is one of the leading causes of transfusion-related fatalities and, to date, is without available therapies. Here, we investigated the role of the complement system in TRALI. Murine anti-major histocompatibility complex class I antibodies were used in TRALI mouse models, in combination with analyses of plasma samples from patients with TRALI. We found that in vitro complement activation was related to in vivo antibody-mediated TRALI induction, which was correlated with increased macrophage trafficking from the lungs to the blood in a fragment crystallizable region (Fc)-dependent manner and that this was dependent on C5. Human immunoglobulin G 1 variants of the murine TRALI-inducing antibody 34-1-2S, either unable to activate complement and/or bind to Fcγ receptors (FcγRs), revealed an essential role for the complement system, but not for FcγRs, in the onset of 34-1-2S-mediated TRALI in mice. In addition, we found high levels of complement activation in the plasma of patients with TRALI (n = 53), which correlated with elevated neutrophil extracellular trap (NET) markers. In vitro we found that NETs could be formed in a murine, 2-hit model, mimicking TRALI with lipopolysaccharide and C5a stimulation. Collectively, this reveals a critical role of Fc-mediated complement activation in TRALI, with a direct relation to macrophage trafficking from the lungs to the blood and an association with NET formation, suggesting that targeting the complement system may be an attractive therapeutic approach for combating TRALI.


Asunto(s)
Trampas Extracelulares , Lesión Pulmonar Aguda Postransfusional , Humanos , Ratones , Animales , Pulmón , Anticuerpos , Macrófagos , Activación de Complemento , Proteínas del Sistema Complemento
3.
Front Immunol ; 14: 1290272, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38054006

RESUMEN

Historically platelets are mostly known for their crucial contribution to hemostasis, but there is growing understanding of their role in inflammation and immunity. The immunomodulatory role of platelets entails interaction with pathogens, but also with immune cells including macrophages and dendritic cells (DCs), to activate adaptive immune responses. In our previous work, we have demonstrated that splenic CD169+ macrophages scavenge liposomes and collaborate with conventional type 1 DCs (cDC1) to induce expansion of CD8+ T cells. Here, we show that platelets associate with liposomes and bind to DNGR-1/Clec9a and CD169/Siglec-1 receptors in vitro. In addition, platelets interacted with splenic CD169+ macrophages and cDC1 and further increased liposome internalization by cDC1. Most importantly, platelet depletion prior to liposomal immunization resulted in significantly diminished antigen-specific CD8+ T cell responses, but not germinal center B cell responses. Previously, complement C3 was shown to be essential for platelet-mediated CD8+ T cell activation during bacterial infection. However, after liposomal vaccination CD8+ T cell priming was not dependent on complement C3. While DCs from platelet-deficient mice exhibited unaltered maturation status, they did express lower levels of CCR7. In addition, in the absence of platelets, CCL5 plasma levels were significantly reduced. Overall, our findings demonstrate that platelets engage in a cross-talk with CD169+ macrophages and cDC1 and emphasize the importance of platelets in induction of CD8+ T cell responses in the context of liposomal vaccination.


Asunto(s)
Linfocitos T CD8-positivos , Liposomas , Animales , Ratones , Liposomas/metabolismo , Complemento C3/metabolismo , Macrófagos , Antígenos
4.
J Innate Immun ; 15(1): 850-864, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37939687

RESUMEN

Severe COVID-19 is characterized by systemic inflammation and multiple organ dysfunction syndrome (MODS). Arterial and venous thrombosis are involved in the pathogenesis of MODS and fatality in COVID-19. There is evidence that complement and neutrophil activation in the form of neutrophil extracellular traps are main drivers for development of microvascular complications in COVID-19. Plasma and serum samples were collected from 83 patients infected by SARS-CoV-2 during the two first waves of COVID-19, before the availability of SARS-CoV-2 vaccination. Samples were collected at enrollment, day 11, and day 28; and patients had differing severity of disease. In this comprehensive study, we measured cell-free DNA, neutrophil activation, deoxyribonuclease I activity, complement activation, and D-dimers in longitudinal samples of COVID-19 patients. We show that all the above markers, except deoxyribonuclease I activity, increased with disease severity. Moreover, we provide evidence that in severe disease there is continued neutrophil and complement activation, as well as D-dimer formation and nucleosome release, whereas in mild and moderate disease all these markers decrease over time. These findings suggest that neutrophil and complement activation are important drivers of microvascular complications and that they reflect immunothrombosis in these patients. Neutrophil activation, complement activation, cell-free DNA, and D-dimer levels have the potential to serve as reliable biomarkers for disease severity and fatality in COVID-19. They might also serve as suitable markers with which to monitor the efficacy of therapeutic interventions in COVID-19.


Asunto(s)
COVID-19 , Ácidos Nucleicos Libres de Células , Trampas Extracelulares , Trombosis , Humanos , SARS-CoV-2 , Tromboinflamación , Vacunas contra la COVID-19 , Trombosis/patología , Activación de Complemento , Gravedad del Paciente , Desoxirribonucleasa I
5.
J Immunol ; 211(11): 1725-1735, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37843500

RESUMEN

Complement activation via the classical pathway is initiated when oligomeric Igs on target surfaces are recognized by C1 of the complement cascade. The strength of this interaction and activation of the complement system are influenced by structural variation of the Ab, including Ab isotype, subclass, and glycosylation profile. Polymorphic variants of IgG have also been described to influence Fc-dependent effector functions. Therefore, we assessed complement binding, deposition, and complement-dependent cytotoxicity (CDC) of 27 known IgG allotypes with anti-trinitrophenyl specificity. Differences between allotypes within subclasses were minor for IgG1, IgG3, and IgG4 allotypes, and more substantial for IgG2. Allelic variant IGHG2*06, containing a unique serine at position 378 in the CH3 domain, showed less efficient complement activation and CDC compared with other IgG2 polymorphisms. We also observed variable cell lysis between IgG1 and IgG3, with IgG3 being superior in lysis of human RBCs and Ramos cells, and IgG1 being superior in lysis of Raji and Wien133 cells, demonstrating that a long-standing conundrum in the literature depends on cellular context. Furthermore, we compared IgG1 and IgG3 under different circumstances, showing that Ag density and Ab hinge length, but not complement regulators, define the context dependency of Ab-mediated CDC activity. Our results point toward a variation in the capacity of IgG subclasses to activate complement due to single amino acid changes and hinge length differences of allotypes to activate complement, which might give new insights on susceptibility to infectious, alloimmune, or autoimmune diseases and aid the design of Ab-based therapeutics.


Asunto(s)
Activación de Complemento , Inmunoglobulina G , Humanos , Glicosilación
6.
Blood Adv ; 7(13): 3128-3139, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-36920779

RESUMEN

Complement-mediated (CM) autoimmune hemolytic anemia (AIHA) is characterized by the destruction of red blood cells (RBCs) by autoantibodies that activate the classical complement pathway. These antibodies also reduce transfusion efficacy via the lysis of donor RBCs. Because C1-inhibitor (C1-INH) is an endogenous regulator of the classical complement pathway, we hypothesized that peritransfusional C1-INH in patients with severe CM-AIHA reduces complement activation and hemolysis, and thus enhances RBC transfusion efficacy. We conducted a prospective, single-center, phase 2, open-label trial (EudraCT2012-003710-13). Patients with confirmed CM-AIHA and indication for the transfusion of 2 RBC units were eligible for inclusion. Four IV C1-INH doses (6000, 3000, 2000, and 1000 U) were administered with 12-hour intervals around RBC transfusion. Serial blood samples were analyzed for hemolytic activity, RBC opsonization, complement activation, and inflammation markers. Ten patients were included in the study. C1-INH administration increased plasma C1-INH antigen and activity, peaking at 48 hours after the first dose and accompanied by a significant reduction of RBC C3d deposition. Hemoglobin levels increased briefly after transfusion but returned to baseline within 48 hours. Overall, markers of hemolysis, inflammation, and complement activation remained unchanged. Five grade 3 and 1 grade 4 adverse event occurred but were considered unrelated to the study medication. In conclusion, peritransfusional C1-INH temporarily reduced complement activation. However, C1-INH failed to halt hemolytic activity in severe transfusion-dependent-CM-AIHA. We cannot exclude that posttransfusional hemolytic activity would have been even higher without C1-INH. The potential of complement inhibition on transfusion efficacy in severe CM-AIHA remains to be determined.


Asunto(s)
Anemia Hemolítica Autoinmune , Humanos , Anemia Hemolítica Autoinmune/terapia , Autoanticuerpos , Proteínas del Sistema Complemento , Hemólisis , Inflamación , Estudios Prospectivos
7.
Clin Transl Immunology ; 12(1): e1436, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36721662

RESUMEN

Objectives: The complement system is an important component of innate immunity. The alternative pathway (AP) amplification loop is considered an essential feed forward mechanism for complement activation. However, the role of the AP in classical pathway (CP) activation has only been studied in ELISA settings. Here, we investigated its contribution on physiologically relevant surfaces of human cells and bacterial pathogens and in antibody-mediated complement activation, including in autoimmune haemolytic anaemia (AIHA) setting with autoantibodies against red blood cells (RBCs). Methods: We evaluated the contribution of the AP to complement responses initiated through the CP on human RBCs by serum of AIHA patients and recombinant antibodies. Moreover, we studied complement activation on Neisseria meningitidis and Escherichia coli. The effect of the AP was examined using either AP-depleted sera or antibodies against factor B and factor D. Results: We show that the amplification loop is redundant when efficient CP activation takes place. This is independent of the presence of membrane-bound complement regulators. The role of the AP may become significant when insufficient CP complement activation occurs, but this depends on antibody levels and (sub)class. Our data indicate that therapeutic intervention in the amplification loop will most likely not be effective to treat antibody-mediated diseases. Conclusion: The AP can be bypassed through efficient CP activation. The AP amplification loop has a role in complement activation during conditions of modest activation via the CP, when it can allow for efficient complement-mediated killing.

9.
Front Immunol ; 13: 876776, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720329

RESUMEN

Neisseria meningitidis, the causative agent of meningococcal disease (MD), evades complement-mediated clearance upon infection by 'hijacking' the human complement regulator factor H (FH). The FH protein family also comprises the homologous FH-related (FHR) proteins, hypothesized to act as antagonists of FH, and FHR-3 has recently been implicated to play a major role in MD susceptibility. Here, we show that the circulating levels of all FH family proteins, not only FH and FHR-3, are equally decreased during the acute illness. We did neither observe specific consumption of FH or FHR-3 by N. meningitidis, nor of any of the other FH family proteins, suggesting that the globally reduced levels are due to systemic processes including dilution by fluid administration upon admission and vascular leakage. MD severity associated predominantly with a loss of FH rather than FHRs. Additionally, low FH levels associated with renal failure, suggesting insufficient protection of host tissue by the active protection by the FH protein family, which is reminiscent of reduced FH activity in hemolytic uremic syndrome. Retaining higher levels of FH may thus limit tissue injury during MD.


Asunto(s)
Síndrome Hemolítico-Urémico , Infecciones Meningocócicas , Neisseria meningitidis , Factor H de Complemento , Proteínas del Sistema Complemento , Humanos
10.
J Neurol ; 269(7): 3700-3705, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35157138

RESUMEN

INTRODUCTION: In anti-myelin-associated glycoprotein IgM paraprotein-related peripheral neuropathy (anti-MAG PN), there is a lack of reliable biomarkers to select patients eligible for therapy and for evaluating treatment effects, both in routine practice and in clinical trials. Neurofilament light chain (NfL) and contactin-1 (CNTN1) can serve as markers of axonal and paranodal damage. Complement activation is involved in the pathogenesis in anti-MAG PN. We, therefore, hypothesized that serum NfL, CNTN1, C3b/c and C4b/c may function as biomarkers of disease activity in anti-MAG PN. METHODS: In this prospective cohort study, we included 24 treatment-naïve patients with anti-MAG PN (mean age 69 years, 57% male) that had IgM paraproteinemia, a high IgM MAG-antibody, and clinical diagnosis of anti-MAG PN by a neurologist specialized in peripheral nerve disorders. We measured serum NfL, CNTN1, C3b/c and C4b/c, reference values were based on healthy controls. As controls, 10 treatment-naïve patients with IgM Monoclonal gammopathy of undetermined significance (MGUS) or Waldenström's Macroglobulinemia (mean age 69 years, 60% male) without signs of neuropathy were included (non-PN). RESULTS: NfL, CNTN1 levels in serum were mostly normal in anti-MAG PN patients and comparable to non-PN patients. C3b/c and C4b/c levels were normal in anti-MAG PN patients. CONCLUSION: Our results do not support serum NfL, CNTN1, and C3b/c and C4b/c as potential biomarkers in anti-MAG PN, although we cannot exclude that subgroups or subtle abnormalities could be found in a much larger cohort with longitudinal follow-up.


Asunto(s)
Paraproteinemias , Enfermedades del Sistema Nervioso Periférico , Anciano , Autoanticuerpos , Biomarcadores , Activación de Complemento , Contactina 1 , Femenino , Humanos , Inmunoglobulina M , Filamentos Intermedios , Masculino , Glicoproteína Asociada a Mielina , Paraproteinemias/complicaciones , Paraproteínas , Estudios Prospectivos
11.
Cells ; 11(2)2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35053354

RESUMEN

Neutrophils are the most abundant innate immune cells in the circulation and they are the first cells recruited to sites of infection or inflammation. Almost half of the intracellular protein content in neutrophils consists of S100A8 and S100A9, though there has been controversy about their actual localization. Once released extracellularly, these proteins are thought to act as damage-associated molecular patterns (DAMPs), though their mechanism of action is not well understood. These S100 proteins mainly form heterodimers (S100A8/A9, also known as calprotectin) and this heterocomplex is recognized as a useful biomarker for several inflammatory diseases. We observed that S100A8/A9 is highly present in the cytoplasmic fraction of neutrophils and is not part of the granule content. Furthermore, we found that S100A8/A9 was not released in parallel with granular content but upon the formation of neutrophil extracellular traps (NETs). Accordingly, neutrophils of patients with chronic granulomatous disease, who are deficient in phorbol 12-myristate 13-acetate (PMA)-induced NETosis, did not release S100A8/A9 upon PMA stimulation. Moreover, we purified S100A8/A9 from the cytoplasmic fraction of neutrophils and found that S100A8/A9 could induce neutrophil activation, including adhesion and CD11b upregulation, indicating that this DAMP might amplify neutrophil activation.


Asunto(s)
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Trampas Extracelulares/metabolismo , Activación Neutrófila , Degranulación de la Célula , Citoplasma/metabolismo , Exocitosis , Humanos , Neutrófilos/metabolismo , Neutrófilos/ultraestructura
12.
Thromb Haemost ; 122(1): 80-91, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33940654

RESUMEN

Hemolytic disorders characterized by complement-mediated intravascular hemolysis, such as autoimmune hemolytic anemia and paroxysmal nocturnal hemoglobinuria, are often complicated by life-threatening thromboembolic complications. Severe hemolytic episodes result in the release of red blood cell (RBC)-derived proinflammatory and oxidatively reactive mediators (e.g., extracellular hemoglobin, heme, and iron) into plasma. Here, we studied the role of these hemolytic mediators in coagulation activation by measuring factor Xa (FXa) and thrombin generation in the presence of RBC lysates. Our results show that hemolytic microvesicles (HMVs) formed during hemolysis stimulate thrombin generation through a mechanism involving FVIII and FIX, the so-called intrinsic tenase complex. Iron scavenging during hemolysis using deferoxamine decreased the ability of the HMVs to enhance thrombin generation. Furthermore, the addition of ferric chloride (FeCl3) to plasma propagated thrombin generation in a FVIII- and FIX-dependent manner suggesting that iron positively affects blood coagulation. Phosphatidylserine (PS) blockade using lactadherin and iron chelation using deferoxamine reduced intrinsic tenase activity in a purified system containing HMVs as source of phospholipids confirming that both PS and iron ions contribute to the procoagulant effect of the HMVs. Finally, the effects of FeCl3 and HMVs decreased in the presence of ascorbate and glutathione indicating that oxidative stress plays a role in hypercoagulability. Overall, our results provide evidence for the contribution of iron ions derived from hemolytic RBCs to thrombin generation. These findings add to our understanding of the pathogenesis of thrombosis in hemolytic diseases.


Asunto(s)
Coagulación Sanguínea/efectos de los fármacos , Micropartículas Derivadas de Células/metabolismo , Cisteína Endopeptidasas/metabolismo , Hierro/metabolismo , Proteínas de Neoplasias/metabolismo , Coagulación Sanguínea/fisiología , Micropartículas Derivadas de Células/química , Micropartículas Derivadas de Células/efectos de los fármacos , Micropartículas Derivadas de Células/fisiología , Cisteína Endopeptidasas/efectos adversos , Cisteína Endopeptidasas/fisiología , Eritrocitos/química , Eritrocitos/metabolismo , Eritrocitos/fisiología , Hemólisis/fisiología , Humanos , Hierro/sangre , Proteínas de Neoplasias/efectos adversos , Proteínas de Neoplasias/fisiología , Trombosis/metabolismo , Trombosis/fisiopatología
13.
Front Immunol ; 13: 1061696, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36591303

RESUMEN

The complement system is one of the first defense lines protecting from invading pathogens. However, it may turn offensive to the body's own cells and tissues when deregulated by the presence of rare genetic variants that impair physiological regulation and/or provoke abnormal activity of key enzymatic components. Factor B and complement C2 are examples of paralogs engaged in the alternative and classical/lectin complement pathway, respectively. Pathogenic mutations in the von Willebrand factor A domain (vWA) of FB have been known for years. Despite substantial homology between two proteins and the demonstration that certain substitutions in FB translated to C2 result in analogous phenotype, there was a limited number of reports on pathogenic C2 variants in patients. Recently, we studied a cohort of patients suffering from rare kidney diseases and confirmed the existence of two gain-of-function and three loss-of-function mutations within the C2 gene sequences coding for the vWA domain (amino acids 254-452) or nearly located unstructured region (243-253) of C2 protein. Herein, we report the functional consequences of amino acid substitution of glutamine at position 263. The p.Q263G variant resulted in the gain-of-function phenotype, similarly to a homologous mutation p.D279G in FB. Conversely, the p.Q263P variant found in a patient with C3 glomerulopathy resulted in the loss of C2 function. Our results confirm that the N-terminal part of the vWA domain is a hot spot crucial for the complement C2 function.


Asunto(s)
Complemento C2 , Factor de von Willebrand , Factor de von Willebrand/genética , Factor de von Willebrand/metabolismo , Complemento C2/genética , Factor B del Complemento/genética , Mutación , Secuencia de Bases
14.
Front Immunol ; 12: 724361, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899688

RESUMEN

The impairment of the alternative complement pathway contributes to rare kidney diseases such as atypical hemolytic uremic syndrome (aHUS) and C3 glomerulopathy (C3G). We recently described an aHUS patient carrying an exceptional gain-of-function (GoF) mutation (S250C) in the classical complement pathway component C2 leading to the formation of hyperactive classical convertases. We now report the identification of the same mutation and another C2 GoF mutation R249C in two other patients with a glomerulopathy of uncertain etiology. Both mutations stabilize the classical C3 convertases by a similar mechanism. The presence of R249C and S250C variants in serum increases complement-dependent cytotoxicity (CDC) in antibody-sensitized human cells and elevates deposition of C3 on ELISA plates coated with C-reactive protein (CRP), as well as on the surface of glomerular endothelial cells. Our data justify the inclusion of classical pathway genes in the genetic analysis of patients suspected of complement-driven renal disorders. Also, we point out CRP as a potential antibody-independent trigger capable of driving excessive complement activation in carriers of the GoF mutations in complement C2.


Asunto(s)
Proteína C-Reactiva/metabolismo , Complemento C2/genética , Complemento C3/metabolismo , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Mutación con Ganancia de Función , Humanos
15.
Am J Hum Genet ; 108(8): 1367-1384, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34260947

RESUMEN

Age-related macular degeneration (AMD) is the principal cause of blindness in the elderly population. A strong effect on AMD risk has been reported for genetic variants at the CFH locus, encompassing complement factor H (CFH) and the complement-factor-H-related (CFHR) genes, but the underlying mechanisms are not fully understood. We aimed to dissect the role of factor H (FH) and FH-related (FHR) proteins in AMD in a cohort of 202 controls and 216 individuals with AMD. We detected elevated systemic levels of FHR-1 (p = 1.84 × 10-6), FHR-2 (p = 1.47 × 10-4), FHR-3 (p = 1.05 × 10-5) and FHR-4A (p = 1.22 × 10-2) in AMD, whereas FH concentrations remained unchanged. Common AMD genetic variants and haplotypes at the CFH locus strongly associated with FHR protein concentrations (e.g., FH p.Tyr402His and FHR-2 concentrations, p = 3.68 × 10-17), whereas the association with FH concentrations was limited. Furthermore, in an International AMD Genomics Consortium cohort of 17,596 controls and 15,894 individuals with AMD, we found that low-frequency and rare protein-altering CFHR2 and CFHR5 variants associated with AMD independently of all previously reported genome-wide association study (GWAS) signals (p = 5.03 × 10-3 and p = 2.81 × 10-6, respectively). Low-frequency variants in CFHR2 and CFHR5 led to reduced or absent FHR-2 and FHR-5 concentrations (e.g., p.Cys72Tyr in CFHR2 and FHR-2, p = 2.46 × 10-16). Finally, we showed localization of FHR-2 and FHR-5 in the choriocapillaris and in drusen. Our study identifies FHR proteins as key proteins in the AMD disease mechanism. Consequently, therapies that modulate FHR proteins might be effective for treating or preventing progression of AMD. Such therapies could target specific individuals with AMD on the basis of their genotypes at the CFH locus.


Asunto(s)
Proteínas Inactivadoras del Complemento C3b/metabolismo , Factor H de Complemento/genética , Proteínas del Sistema Complemento/metabolismo , Predisposición Genética a la Enfermedad , Haplotipos , Degeneración Macular/patología , Polimorfismo de Nucleótido Simple , Estudios de Cohortes , Proteínas Inactivadoras del Complemento C3b/genética , Proteínas del Sistema Complemento/genética , Estudio de Asociación del Genoma Completo , Humanos , Degeneración Macular/etiología , Degeneración Macular/metabolismo
16.
Front Immunol ; 12: 631308, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34079538

RESUMEN

Febrile patients, suffering from an infection, inflammatory disease or autoimmunity may present with similar or overlapping clinical symptoms, which makes early diagnosis difficult. Therefore, biomarkers are needed to help physicians form a correct diagnosis and initiate the right treatment to improve patient outcomes following first presentation or admittance to hospital. Here, we review the landscape of novel biomarkers and approaches of biomarker discovery. We first discuss the use of current plasma parameters and whole blood biomarkers, including results obtained by RNA profiling and mass spectrometry, to discriminate between bacterial and viral infections. Next we expand upon the use of biomarkers to distinguish between infectious and non-infectious disease. Finally, we discuss the strengths as well as the potential pitfalls of current developments. We conclude that the use of combination tests, using either protein markers or transcriptomic analysis, have advanced considerably and should be further explored to improve current diagnostics regarding febrile infections and inflammation. If proven effective when combined, these biomarker signatures will greatly accelerate early and tailored treatment decisions.


Asunto(s)
Infecciones Bacterianas/diagnóstico , Fiebre/etiología , Inflamación/diagnóstico , Virosis/diagnóstico , Infecciones Bacterianas/sangre , Infecciones Bacterianas/complicaciones , Biomarcadores/sangre , Diagnóstico Diferencial , Fiebre/sangre , Fiebre/microbiología , Fiebre/virología , Perfilación de la Expresión Génica , Humanos , Inflamación/sangre , Inflamación/complicaciones , Índice de Severidad de la Enfermedad , Virosis/sangre , Virosis/complicaciones
17.
Front Immunol ; 12: 664209, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054832

RESUMEN

Rationale: Systemic activation of procoagulant and inflammatory mechanisms has been implicated in the pathogenesis of COVID-19. Knowledge of activation of these host response pathways in the lung compartment of COVID-19 patients is limited. Objectives: To evaluate local and systemic activation of coagulation and interconnected inflammatory responses in critically ill COVID-19 patients with persistent acute respiratory distress syndrome. Methods: Paired bronchoalveolar lavage fluid and plasma samples were obtained from 17 patients with COVID-19 related persistent acute respiratory distress syndrome (mechanical ventilation > 7 days) 1 and 2 weeks after start mechanical ventilation and compared with 8 healthy controls. Thirty-four host response biomarkers stratified into five functional domains (coagulation, complement system, cytokines, chemokines and growth factors) were measured. Measurements and Main Results: In all patients, all functional domains were activated, especially in the bronchoalveolar compartment, with significantly increased levels of D-dimers, thrombin-antithrombin complexes, soluble tissue factor, C1-inhibitor antigen and activity levels, tissue type plasminogen activator, plasminogen activator inhibitor type I, soluble CD40 ligand and soluble P-selectin (coagulation), next to activation of C3bc and C4bc (complement) and multiple interrelated cytokines, chemokines and growth factors. In 10 patients in whom follow-up samples were obtained between 3 and 4 weeks after start mechanical ventilation many bronchoalveolar and plasma host response biomarkers had declined. Conclusions: Critically ill, ventilated patients with COVID-19 show strong responses relating to coagulation, the complement system, cytokines, chemokines and growth factors in the bronchoalveolar compartment. These results suggest a local pulmonary rather than a systemic procoagulant and inflammatory "storm" in severe COVID-19.


Asunto(s)
COVID-19/inmunología , Enfermedad Crítica , Pulmón/metabolismo , Síndrome de Dificultad Respiratoria/inmunología , SARS-CoV-2/fisiología , Tromboplastina/metabolismo , Anciano , Coagulación Sanguínea , Estudios de Cohortes , Femenino , Productos de Degradación de Fibrina-Fibrinógeno/metabolismo , Estudios de Seguimiento , Humanos , Inmunidad Innata , Pulmón/patología , Masculino , Persona de Mediana Edad , Respiración Artificial
18.
Blood Rev ; 50: 100834, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33985796

RESUMEN

Thromboembolic events represent the most common complication of hemolytic anemias characterized by complement-mediated hemolysis such as paroxysmal nocturnal hemoglobinuria and autoimmune hemolytic anemia. Similarly, atypical hemolytic uremic syndrome is characterized by hemolysis and thrombotic abnormalities. The main player in the development of thrombosis in hemolytic diseases is suggested to be the complement system. However, the release of extracellular hemoglobin and heme by hemolysis itself can also drive procoagulant responses. Both, complement activation and hemolysis promote the activation of neutrophils resulting in the formation of neutrophil extracellular traps and induce inflammation and vascular damage which all together might (synergistically) lead to hypercoagulability. In this review we aim to summarize the current knowledge on the role of complement activation and hemolysis in the onset of thrombosis in hemolytic diseases. This review will discuss the interplay between different biological systems and neutrophil activation contributing to the pathogenesis of thrombosis. Finally, we will combine this fundamental knowledge and address the pathophysiology of hemolysis in prototypical complement-driven diseases.


Asunto(s)
Síndrome Hemolítico Urémico Atípico , Hemoglobinuria Paroxística , Trombosis , Activación de Complemento , Hemoglobinuria Paroxística/sangre , Hemoglobinuria Paroxística/complicaciones , Hemólisis , Humanos , Trombosis/sangre , Trombosis/etiología
19.
Cancer Immunol Res ; 9(7): 790-810, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33990375

RESUMEN

T-cell activation and expansion in the tumor microenvironment (TME) are critical for antitumor immunity. Neutrophils in the TME acquire a complement-dependent T-cell suppressor phenotype that is characterized by inhibition of T-cell proliferation and activation through mechanisms distinct from those of myeloid-derived suppressor cells. In this study, we used ascites fluid supernatants (ASC) from patients with ovarian cancer as an authentic component of the TME to evaluate the effects of ASC on neutrophil function and mechanisms for neutrophil-driven immune suppression. ASC prolonged neutrophil life span, decreased neutrophil density, and induced nuclear hypersegmentation. Mass cytometry analysis showed that ASC induced 15 distinct neutrophil clusters. ASC stimulated complement deposition and signaling in neutrophils, resulting in surface mobilization of granule constituents, including NADPH oxidase. NADPH oxidase activation and phosphatidylserine signaling were required for neutrophil suppressor function, although we did not observe a direct role of extracellular reactive oxygen species in inhibiting T-cell proliferation. Postoperative surgical drainage fluid also induced a complement-dependent neutrophil suppressor phenotype, pointing to this effect as a general response to injury. Like circulating lymphocytes, ASC-activated neutrophils caused complement-dependent suppression of tumor-associated lymphocytes. ASC-activated neutrophils adhered to T cells and caused trogocytosis of T-cell membranes. These injury and signaling cues resulted in T-cell immunoparalysis characterized by impaired NFAT translocation, IL2 production, glucose uptake, mitochondrial function, and mTOR activation. Our results demonstrate that complement-dependent priming of neutrophil effector functions in the TME induces a T-cell nonresponsiveness distinct from established checkpoint pathways and identify targets for immunotherapy.See related Spotlight by Cassatella, p. 725.


Asunto(s)
Neutrófilos/inmunología , Neoplasias Ováricas/inmunología , Linfocitos T/inmunología , Trogocitosis/inmunología , Escape del Tumor , Adulto , Células Cultivadas , Femenino , Humanos , Activación de Linfocitos , Persona de Mediana Edad , Activación Neutrófila , Neutrófilos/metabolismo , Neoplasias Ováricas/sangre , Neoplasias Ováricas/patología , Neoplasias Ováricas/cirugía , Cultivo Primario de Células , Microambiente Tumoral/inmunología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...