Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 108(5-2): 055211, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38115527

RESUMEN

We present measurements of the temporal decay rate of one-dimensional (1D), linear Langmuir waves excited by an ultrashort laser pulse. Langmuir waves with relative amplitudes of approximately 6% were driven by 1.7J, 50fs laser pulses in hydrogen and deuterium plasmas of density n_{e0}=8.4×10^{17}cm^{-3}. The wakefield lifetimes were measured to be τ_{wf}^{H_{2}}=(9±2) ps and τ_{wf}^{D_{2}}=(16±8) ps, respectively, for hydrogen and deuterium. The experimental results were found to be in good agreement with 2D particle-in-cell simulations. In addition to being of fundamental interest, these results are particularly relevant to the development of laser wakefield accelerators and wakefield acceleration schemes using multiple pulses, such as multipulse laser wakefield accelerators.

2.
Phys Rev E ; 102(5-1): 053201, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33327141

RESUMEN

We demonstrate through experiments and numerical simulations that low-density, low-loss, meter-scale plasma channels can be generated by employing a conditioning laser pulse to ionize the neutral gas collar surrounding a hydrodynamic optical-field-ionized (HOFI) plasma channel. We use particle-in-cell simulations to show that the leading edge of the conditioning pulse ionizes the neutral gas collar to generate a deep, low-loss plasma channel which guides the bulk of the conditioning pulse itself as well as any subsequently injected pulses. In proof-of-principle experiments, we generate conditioned HOFI (CHOFI) waveguides with axial electron densities of n_{e0}≈1×10^{17}cm^{-3} and a matched spot size of 26µm. The power attenuation length of these CHOFI channels was calculated to be L_{att}=(21±3)m, more than two orders of magnitude longer than achieved by HOFI channels. Hydrodynamic and particle-in-cell simulations demonstrate that meter-scale CHOFI waveguides with attenuation lengths exceeding 1 m could be generated with a total laser pulse energy of only 1.2 J per meter of channel. The properties of CHOFI channels are ideally suited to many applications in high-intensity light-matter interactions, including multi-GeV plasma accelerator stages operating at high pulse repetition rates.

3.
Phys Rev E ; 97(5-1): 053203, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29906935

RESUMEN

We present experiments and numerical simulations which demonstrate that fully ionized, low-density plasma channels could be formed by hydrodynamic expansion of plasma columns produced by optical field ionization. Simulations of the hydrodynamic expansion of plasma columns formed in hydrogen by an axicon lens show the generation of 200 mm long plasma channels with axial densities of order n_{e}(0)=1×10^{17}cm^{-3} and lowest-order modes of spot size W_{M}≈40µm. These simulations show that the laser energy required to generate the channels is modest: of order 1 mJ per centimeter of channel. The simulations are confirmed by experiments with a spherical lens which show the formation of short plasma channels with 1.5×10^{17}cm^{-3}≲n_{e}(0)≲1×10^{18}cm^{-3} and 61µm≳W_{M}≳33µm. Low-density plasma channels of this type would appear to be well suited as multi-GeV laser-plasma accelerator stages capable of long-term operation at high pulse repetition rates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...