Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39231260

RESUMEN

In recent years, significant advancements in printed electronics and flexible materials have catalyzed the development of electronic skins for wearable applications. However, the low glass transition temperature of flexible substrates poses a challenge as it is incompatible with the high-temperature annealing required for electrode fabrication, thereby limiting the performance of flexible electronic devices. In this study, we address these limitations by proposing a novel flexible device manufacturing process that combines adhesive printing patterning with a transfer printing technology. By employing poly(vinylidene fluoride) (PVDF)/graphene nitride (GCN) as the transfer substrate and dielectric layer, we successfully fabricated a high-performance dual-mode touch sensor on a large scale. The successful development of this dual-mode sensor can be attributed to two key factors: the construction of a robust hydrogen-bonding network between the PVDF/GCN dielectric layer and the carbon electrode and the ability of GCN to restrict the movement of PVDF molecular chains within the dielectric layer. This restriction reduces the overall polarization of the film, enabling the formation of a complete device structure with a highly sensitive edge electric field. The noncontact sensors developed in this study are fully printable into sensor arrays and can be seamlessly integrated with internet of things technology for wearable applications. These sensors exhibit exceptional tactile response and facilitate effective human-machine interactions over extended distances, underscoring their significant potential in fields such as healthcare and artificial intelligence.

2.
J Funct Biomater ; 15(8)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39194664

RESUMEN

This review explores the latest advancements in nanoporous materials and their applications in biomedical imaging and diagnostics. Nanoporous materials possess unique structural features, including high surface area, tunable pore size, and versatile surface chemistry, making them highly promising platforms for a range of biomedical applications. This review begins by providing an overview of the various types of nanoporous materials, including mesoporous silica nanoparticles, metal-organic frameworks, carbon-based materials, and nanoporous gold. The synthesis method for each material, their current research trends, and prospects are discussed in detail. Furthermore, this review delves into the functionalization and surface modification techniques employed to tailor nanoporous materials for specific biomedical imaging applications. This section covers chemical functionalization, bioconjugation strategies, and surface coating and encapsulation methods. Additionally, this review examines the diverse biomedical imaging techniques enabled by nanoporous materials, such as fluorescence imaging, magnetic resonance imaging (MRI), computed tomography (CT) imaging, ultrasound imaging, and multimodal imaging. The mechanisms underlying these imaging techniques, their diagnostic applications, and their efficacy in clinical settings are thoroughly explored. Through an extensive analysis of recent research findings and emerging trends, this review underscores the transformative potential of nanoporous materials in advancing biomedical imaging and diagnostics. The integration of interdisciplinary approaches, innovative synthesis techniques, and functionalization strategies offers promising avenues for the development of next-generation imaging agents and diagnostic tools with enhanced sensitivity, specificity, and biocompatibility.

3.
J Environ Manage ; 368: 122248, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39180825

RESUMEN

This study introduces an innovative approach using highly efficient nanocomposite materials to effectively remove PFAS from water, demonstrating remarkable adsorption capabilities. The nanocomposite was synthesized by integrating a zirconium-based metal-organic framework (MOF) called UiO-66 with graphene oxide (GO) within a polyvinyl alcohol (PVA) matrix. The resulting PVA@UiO-66/GO material features flower-like UiO-66 MOF crystals embedded in the PVA and GO matrix. Various kinetic models were applied to determine the rate constants and adsorption capacities, with the Langmuir isotherm indicating an adsorption capacity of 9.904 mg/g. Thermodynamic analysis confirmed the process's spontaneity and exothermic nature. The UiO-66-NH2/GO/PVA composite also demonstrated high reusability, maintaining substantial PFOA removal efficiency across multiple cycles, with optimal reduction occurring at approximately pH 5. Overall, the PVA@UiO-66/GO composites offer an effective, sustainable, and environmentally friendly solution for PFAS removal in water purification.


Asunto(s)
Caprilatos , Fluorocarburos , Grafito , Alcohol Polivinílico , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Purificación del Agua/métodos , Alcohol Polivinílico/química , Grafito/química , Fluorocarburos/química , Contaminantes Químicos del Agua/química , Caprilatos/química , Nanocompuestos/química , Cinética , Estructuras Metalorgánicas/química , Termodinámica , Ácidos Ftálicos
4.
Biomolecules ; 14(8)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39199422

RESUMEN

The development of vaccines has entered a new era with the advent of nanotechnology, particularly through the utilization of nanoparticles. This review focuses on the role of nanoparticles in enhancing the efficacy and stability of mRNA vaccines. Nanoparticles, owing to their unique properties such as high surface area, tunable size, and their ability to be functionalized, have emerged as powerful tools in vaccine development. Specifically, lipid nanoparticles (LNPs) have revolutionized the delivery of mRNA vaccines by protecting the fragile mRNA molecules and facilitating their efficient uptake by cells. This review discusses the various types of nanoparticles employed in mRNA vaccine formulations, including lipid-based, polymer-based, and inorganic nanoparticles, highlighting their advantages and limitations. Moreover, it explores the mechanisms by which nanoparticles improve immune responses, such as enhanced antigen presentation and the prolonged release of mRNA. This review also addresses the challenges and future directions in nanoparticle-based vaccine development, emphasizing the need for further research to optimize formulations for broader applications. By providing an in-depth analysis of the current advancements in and potential of nanoparticles in mRNA vaccines, this review aims to shed light on their critical role in combating infectious diseases and improving public health outcomes.


Asunto(s)
Nanopartículas , Vacunas de ARNm , Nanopartículas/química , Humanos , ARN Mensajero/genética , Animales , Eficacia de las Vacunas , Desarrollo de Vacunas , Liposomas
5.
J Colloid Interface Sci ; 677(Pt B): 862-871, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39173518

RESUMEN

Two-dimensional metal-organic frameworks (2D MOFs) hold great promise as electrochemically active materials. However, their application in MOF nanocomposite electrodes in solution engineering is limited by structural self-stacking and imperfect conductive pathways. In this study, we used meso-tetra(4-carboxyphenyl) porphine (TCPP) with off-domain π-bonds to reconstitute Zn-TCPP (ZMOF) and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) through an interfacial modulation strategy involving electrostatic coupling and hydrogen bonding, creating a conductive composite with a nanosheet structure. The negatively charged PSS and ZMOF formed a three-dimensional interconnected conductive network with excellent interfaces. The positively charged PEDOT, fine tuned with the lamellar structure, established strong π-π stacking interactions between the porphyrin and thiophene rings. ZMOF also induced changes in the PEDOT chain structure, weakening PSS entanglement and enhancing charge-transport properties. The specific capacitance of the prepared supercapacitor was as high as 967.8 F g-1. Flexible supercapacitors produced on a large scale using dispensing printing technology exhibited an energy density of 1.85 µWh cm-2 and a power density of 7.08 µW cm-2. This interfacial modulation strategy also exhibited excellent wearable properties, with 96 % capacitance retention at a 180° bending angle and stable cycling performance. This study presented a significant advancement in the functionalization of 2D materials, highlighting their potential for device-grade capacitive architectures.

6.
J Environ Manage ; 366: 121727, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39008923

RESUMEN

Determining hazardous substances in the environment is vital to maintaining the safety and health of all components of society, including the ecosystem and humans. Recently, protein-based nanobiosensors have emerged as effective tools for monitoring potentially hazardous substances in situ. Nanobiosensor detection mode is a combination of particular plasmonic nanomaterials (e.g., nanoparticles, nanotubes, quantum dots, etc.), and specific bioreceptors (e.g., aptamers, antibodies, DNA, etc.), which has the benefits of high selectivity, sensitivity, and compatibility with biological systems. The role of these nanobiosensors in identifying dangerous substances (e.g., heavy metals, organic pollutants, pathogens, toxins, etc.) is discussed along with different detection mechanisms and various transduction methods (e.g., electrical, optical, mechanical, electrochemical, etc.). In addition, topics discussed include the design and construction of these sensors, the selection of proteins, the integration of nanoparticles, and their development processes. A discussion of the challenges and prospects of this technology is also included. As a result, protein nanobiosensors are introduced as a powerful tool for monitoring and improving environmental quality and community safety.


Asunto(s)
Técnicas Biosensibles , Monitoreo del Ambiente , Sustancias Peligrosas , Sustancias Peligrosas/análisis , Monitoreo del Ambiente/métodos , Proteínas/análisis , Nanoestructuras , Nanotecnología , Nanopartículas/química
7.
Dalton Trans ; 53(30): 12410-12433, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38952249

RESUMEN

Due to their distinctive security characteristics, all-solid-state batteries are seen as a potential technology for the upcoming era of energy storage. The flexibility of nanomaterials shows enormous potential for the advancement of all-solid-state batteries' exceptional power and energy storage capacities. These batteries might be applied in many areas such as large-scale energy storage for power grids, as well as in the creation of foldable and flexible electronics, and portable gadgets. The most difficult aspect of creating a comprehensive nanoscale all-solid-state battery assembly is the task of decreasing the particle size of the solid electrolyte while maintaining its excellent ionic conductivity. Materials possessing nanoscale structural features and a substantial electrochemically active surface area have the potential to significantly enhance power characteristics and the cycle life. This might bring about substantial changes to existing energy storage models. The primary objective of this research is to summarize the latest advancements in utilizing nanomaterials for energy harvesting in various all-solid-state battery assemblies. This study examines the most complex solid-solid interfaces of all-solid-state batteries, as well as feasible methods for implementing nanomaterials in such interfaces. Currently, there is significant attention on the necessity to develop electrode-solid electrolyte interfaces that exhibit nanoscale particle articulation and other characteristics related to the behavior of lithium ions.

8.
Nanotechnology ; 35(47)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39079542

RESUMEN

Li-ion battery is currently considered to be the most proven technology for energy storage systems when it comes to the overall combination of energy, power, cyclability and cost. However, there are continuous expectations for cost reduction in large-scale applications, especially in electric vehicles and grids, alongside growing concerns over safety, availability of natural resources for lithium, and environmental remediation. Therefore, industry and academia have consequently shifted their focus towards 'beyond Li-ion technologies'. In this respect, other non-Li-based alkali-ion/polyvalent-ion batteries, non-Li-based all solid-state batteries, fluoride-ion/ammonium-ion batteries, redox-flow batteries, sand batteries and hydrogen fuel cells etc. are becoming potential cost-effective alternatives. While there has been notable swift advancement across various materials, chemistries, architectures, and applications in this field, a comprehensive overview encompassing high-energy 'beyond Li-ion' technologies, along with considerations of commercial viability, is currently lacking. Therefore, in this review article, a rationalized approach is adopted to identify notable 'post-Li' candidates. Their pros and cons are comprehensively presented by discussing the fundamental principles in terms of material characteristics, relevant chemistries, and architectural developments that make a good high-energy 'beyond Li' storage system. Furthermore, a concise summary outlining the primary challenges of each system is provided, alongside the potential strategies being implemented to mitigate these issues. Additionally, the extent to which these strategies have positively influenced the performance of these 'post-Li' technologies is discussed.

9.
Small ; : e2403672, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970560

RESUMEN

Real-time polymerase chain reaction (RT-PCR) with fluorescence detection is the gold standard for diagnosing coronavirus disease 2019 (COVID-19) However, the fluorescence detection in RT-PCR requires multiple amplification steps when the initial deoxyribonucleic acid (DNA) concentration is low. Therefore, this study has developed a highly sensitive surface-enhanced Raman scattering-based PCR (SERS-PCR) assay platform using the gold nanoparticle (AuNP)-internalized gold nanodimpled substrate (AuNDS) plasmonic platform. By comparing different sizes of AuNPs, it is observed that using 30 nm AuNPs improves the detection limit by approximately ten times compared to 70 nm AuNPs. Finite-difference time-domain (FDTD) simulations show that multiple hotspots are formed between AuNPs and the cavity surface and between AuNPs when 30 nm AuNPs are internalized in the cavity, generating a strong electric field. With this 30 nm AuNPs-AuNDS SERS platform, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ribonucleic acid (RNA)-dependent RNA polymerase (RdRp) can be detected in only six amplification cycles, significantly improving over the 25 cycles required for RT-PCR. These findings pave the way for an amplification-free molecular diagnostic system based on SERS.

10.
Nanomaterials (Basel) ; 14(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38998691

RESUMEN

Carbon-based nanomaterials, such as carbon quantum dots (CQDs) and carbon 2D nanosheets (graphene, graphene oxide, and graphdiyne), have shown remarkable potential in various biological applications. CQDs offer tunable photoluminescence and excellent biocompatibility, making them suitable for bioimaging, drug delivery, biosensing, and photodynamic therapy. Additionally, CQDs' unique properties enable bioimaging-guided therapy and targeted imaging of biomolecules. On the other hand, carbon 2D nanosheets exhibit exceptional physicochemical attributes, with graphene excelling in biosensing and bioimaging, also in drug delivery and antimicrobial applications, and graphdiyne in tissue engineering. Their properties, such as tunable porosity and high surface area, contribute to controlled drug release and enhanced tissue regeneration. However, challenges, including long-term biocompatibility and large-scale synthesis, necessitate further research. Potential future directions encompass theranostics, immunomodulation, neural interfaces, bioelectronic medicine, and expanding bioimaging capabilities. In summary, both CQDs and carbon 2D nanosheets hold promise to revolutionize biomedical sciences, offering innovative solutions and improved therapies in diverse biological contexts. Addressing current challenges will unlock their full potential and can shape the future of medicine and biotechnology.

11.
Environ Res ; 258: 119471, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38914256

RESUMEN

Organic dye and nitrophenol pollution from textiles and other industries present a substantial risk to people and aquatic life. One of the most essential remediation techniques is photocatalysis, which uses the strength of visible light to decolorize water. The present study reports Canthium Parviflorum (CNP) leaf extract utilization as an effective bio-reductant for green synthesis of Au NPs. A simple, eco-friendly process with low reaction time and temperature was adopted to synthesize CNP extract-mediated Au-NPs (CNP-AuNPs). The prepared AuNPs characterization involving X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron microscopy (XPS) surface area analysis, ultraviolet-visible spectroscopy (UV-Vis). XRD results showed that the cubic-structured AuNPs had a crystallite size of 14.12 nm. Assessment of organic dyes performance in degrading brilliant green (BTG) and amido black 10B (AMB) under visible light irradiation highlights an impressive 83.25% and 86% degradation efficiency within 120 min, accompanied by a kinetic rate constant dyes was found to be 0.0828 min⁻1, BTG, and 0.0123 min⁻1, Furthermore, the reduction of 4-nitrophenol by NaBH4 using CNP-AuNPs as a catalyst demonstrated good catalytic performance and rapid degradation at 89.4%. and rate constant 0.099 min-1 followed pseudo-first-order. The LC-MS analysis identified various intermediates during the degradation of the CR dye. Radical trapping experiments suggest that photogenerated free electrons and hydroxyl radicals are crucial for degrading the amido black 10B dye The AuNPs influenced the significant factors responsible for the photocatalytic activity, such as the increase in range of absorbance, increased e- and h+ pair separation, improvement in the charge transfer process, and active site formation, which significantly enhanced the process of degradation. We found that the CNP-AuNPs could effectively remove dyes and nitrophenol from industrial wastewater.


Asunto(s)
Oro , Tecnología Química Verde , Nanopartículas del Metal , Extractos Vegetales , Oro/química , Nanopartículas del Metal/química , Extractos Vegetales/química , Tecnología Química Verde/métodos , Restauración y Remediación Ambiental/métodos , Catálisis , Contaminantes Químicos del Agua/química , Colorantes/química , Fotólisis
12.
ACS Appl Mater Interfaces ; 16(27): 34859-34879, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38940603

RESUMEN

MnOx-based materials have limited capacity and poor conductivity over various voltages, hampering their potential for energy storage applications. This work proposes a novel approach to address these challenges. A self-oriented multiple-electronic structure of a 1D-MnO2-nanorod/2D-Mn2O3-nanosphere composite was assembled on 2D-graphene oxide nanosheet/1D-carbon nanofiber (GO/CNF) hybrids. Aided by K+ ions, the MnO2 nanorods were partially converted to Mn2O3 nanospheres, while the GO nanosheets were combined with CNF through hydrogen bonds resulting in a unique double binary 1D-2D mixed morphology of MnO2/Mn2O3-GO/CNF hybrid, having a novel mechanism of multiple Mn ion redox reactions facilitated by the interconnected 3D network. The morphology of the MnO2 nanorods was controlled by regulating the potassium ion content through a rinsing strategy. Interestingly, pure MnO2 nanorods undergo air-annealing to form a mixture of nanorods and nanospheres (MnO2/Mn2O3) with a distinct morphology indicating pseudocapacitive surface redox reactions involving Mn2+, Mn3+, and Mn4+. In the presence of the GO/CNF framework, the charge storage properties of the MnO2/Mn2O3-GO/CNF composite electrode show dominant battery-type behavior because of the unique mesoporous structure with a crumpled morphology that provides relatively large voids and cavities with smaller diffusion paths to facilitate the accumulation/intercalation of charges at the inner electroactive sites for the diffusion-controlled process. The corresponding specific capacity of 800 C g-1 or 222.2 mAh g-1 at 1 A g-1 and remarkable cycling stability (95%) over 5000 cycles at 3 A g-1 were considerably higher than those of the reported electrodes of similar materials. Moreover, a hybrid supercapacitor device is assembled using MnO2/Mn2O3-GO/CNF as the positive electrode and activated carbon as the negative electrode, which exhibits a superior maximum energy density (∼25 Wh kg-1) and maximum power density (∼4.0 kW kg-1). Therefore, the as-synthesized composite highlights the development of highly active low-cost materials for next-generation energy storage applications.

13.
J Colloid Interface Sci ; 670: 729-741, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38788440

RESUMEN

This study explores a strategy to mitigate capacity fading in secondary batteries, which is primarily attributed to side reactions caused by residual Li impurities (LiOH or Li2CO3) on the surface of Ni-rich LiNi0.8Co0.1Mn0.1O2 (NCM811) layered cathode materials. By applying a 1.5 wt% Co3(PO4)2 coating, we successfully formed a thin and stable LiF cathode-electrolyte interface (CEI) layer, which resulted in decreased battery resistance and enhanced diffusion of Li+ ions within the electrolyte. This coating significantly improved the interface stability of NCM811, leading to superior battery performance. Specifically, the discharge capacity of uncoated NCM811 was 190 mA h g-1 at a charge of 4.3 V and a rate of 0.1C, whereas the 1.5Co3(PO4)2/NCM811 exhibited an increased capacity of 213 mA h g-1. Furthermore, the Co3(PO4)2 coating effectively reduced the levels of LiOH and Li2CO3 on the NCM811 surface to only 0.1 %, thereby minimizing adverse side reactions with the electrolyte salt (LiPF6), cation mixing between Ni2+ and Li+, and defects at the NCM811 interface. As a result, battery lifespan was significantly extended. This study presents a robust approach for enhancing battery stability and performance by efficiently reducing residual Li+ ions on the surface of NCM811 through strategic Co3(PO4)2 coating.

14.
Chem Soc Rev ; 53(11): 5394-5427, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38597213

RESUMEN

Advances in surface-enhanced Raman scattering (SERS) detection have helped to overcome the limitations of traditional in vitro diagnostic methods, such as fluorescence and chemiluminescence, owing to its high sensitivity and multiplex detection capability. However, for the implementation of SERS detection technology in disease diagnosis, a SERS-based assay platform capable of analyzing clinical samples is essential. Moreover, infectious diseases like COVID-19 require the development of point-of-care (POC) diagnostic technologies that can rapidly and accurately determine infection status. As an effective assay platform, SERS-based bioassays utilize SERS nanotags labeled with protein or DNA receptors on Au or Ag nanoparticles, serving as highly sensitive optical probes. Additionally, a microdevice is necessary as an interface between the target biomolecules and SERS nanotags. This review aims to introduce various microdevices developed for SERS detection, available for POC diagnostics, including LFA strips, microfluidic chips, and microarray chips. Furthermore, the article presents research findings reported in the last 20 years for the SERS-based bioassay of various diseases, such as cancer, cardiovascular diseases, and infectious diseases. Finally, the prospects of SERS bioassays are discussed concerning the integration of SERS-based microdevices and portable Raman readers into POC systems, along with the utilization of artificial intelligence technology.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Espectrometría Raman , Humanos , COVID-19/diagnóstico , COVID-19/virología , Nanopartículas del Metal/química , SARS-CoV-2/aislamiento & purificación , Sistemas de Atención de Punto , Oro/química
15.
Nano Converg ; 11(1): 17, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687445

RESUMEN

This review reports diverse microfluidic systems utilizing surface-enhanced Raman scattering (SERS) detection for disease diagnosis. Integrating SERS detection technology, providing high-sensitivity detection, and microfluidic technology for manipulating small liquid samples in microdevices has expanded the analytical capabilities previously confined to larger settings. This study explores the principles and uses of various SERS-based microfluidic devices developed over the last two decades. Specifically, we investigate the operational principles of documented SERS-based microfluidic devices, including continuous-flow channels, microarray-embedded microfluidic channels, droplet microfluidic channels, digital droplet channels, and gradient microfluidic channels. We also examine their applications in biomedical diagnostics. In conclusion, we summarize the areas requiring further development to translate these SERS-based microfluidic technologies into practical applications in clinical diagnostics.

16.
Artículo en Inglés | MEDLINE | ID: mdl-38655915

RESUMEN

An easy way of synthesizing low-cost carbon nanomaterials without the need for high-temperature processing approach is critical for energy storage applications because the demand has increased for affordable, long-term, and environmentally friendly synthesized carbon-based materials. Herein, we synthesized multilayered graphitic carbon nano-onions (CNOs) using an oil-wick flame pyrolysis approach, employing biowaste (chicken fat) oil as a cost-effective precursor. The prepared CNOs can provide enhanced ion movement and less resistance for electron transport by interconnecting CNO particles with one another. Furthermore, heteroatom (S,N)-doped CNOs (h-CNOs) were synthesized to optimize the hydrophilic and conductive properties of carbon materials, which eventually exalted the capacitive charge transfer kinetics. The h-CNOs demonstrated superior, highest specific capacitance of 261 F/g, while the undoped CNOs showed a capacitance of 180.6 F/g at a current density of 1 A/g. In addition to capacitance, the h-CNOs also demonstrated a rate capability of 69% and a good cycling stability of 97.5% under high current densities. An asymmetric supercapacitor was fabricated using the h-CNOs as the negative and MnCo2S4 (MCS) as the positive electrode. The device showed high energy and power performance of 32.8 Wh/kg and 7350 W/kg, respectively, with a capacitance retention of 97% over 5000 cycles. Considering the facile strategic way to produce novel carbonaceous materials derived from biowaste oil (chicken fat oil), this could be considered a potential advantage for commercial energy storage devices and may open the door to producing inexpensive, industrially revolutionizing energy storage devices.

17.
Sci Technol Adv Mater ; 25(1): 2311635, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38361533

RESUMEN

The rapid advancement in intelligent bionics has elevated electronic skin to a pivotal component in bionic robots, enabling swift responses to diverse external stimuli. Combining wearable touch sensors with IoT technology lays the groundwork for achieving the versatile functionality of electronic skin. However, most current touch sensors rely on capacitive layer deformations induced by pressure, leading to changes in capacitance values. Unfortunately, sensors of this kind often face limitations in practical applications due to their uniform sensing capabilities. This study presents a novel approach by incorporating graphitic carbon nitride (GCN) into polydimethylsiloxane (PDMS) at a low concentration. Surprisingly, this blend of materials with higher dielectric constants yields composite films with lower dielectric constants, contrary to expectations. Unlike traditional capacitive sensors, our non-contact touch sensors exploit electric field interference between the object and the sensor's edge, with enhanced effects from the low dielectric constant GCN/PDMS film. Consequently, we have fabricated touch sensor grids using an array configuration of dispensing printing techniques, facilitating fast response and ultra-low-limit contact detection with finger-to-device distances ranging from 5 to 100 mm. These sensors exhibit excellent resolution in recognizing 3D object shapes and accurately detecting positional motion. Moreover, they enable real-time monitoring of array data with signal transmission over a 4G network. In summary, our proposed approach for fabricating low dielectric constant thin films, as employed in non-contact touch sensors, opens new avenues for advancing electronic skin technology.


We've created 3D recognition sensing arrays using a printed method, enabling remote data transmission. We've identified an intriguing interfacial effect in GCN/PDMS doping, opening new possibilities in smart skin technology.

18.
J Environ Manage ; 352: 120082, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38232595

RESUMEN

New photoactive materials with uniform and well-defined morphologies were developed for efficient and sustainable photoelectrochemical (PEC) water splitting and hydrogen production. The investigation is focused on hydrothermal deposition of zinc oxide (ZnO) onto indium tin oxide (ITO) conductive surfaces and optimization of hydrothermal temperature for growing uniform sized 3D ZnO morphologies. Fine-tuning of hydrothermal temperature enhanced the scalability, efficiency, and performance of ZnO-decorated ITO electrodes used in PEC water splitting. Under UV light irradiation and using eco-friendly low-cost hydrothermal process in the presence of stable ZnO offered uniform 3D ZnO, which exhibited a high photocurrent of 0.6 mA/cm2 having stability up to 5 h under light-on and light-off conditions. The impact of hydrothermal temperature on the morphological properties of the deposited ZnO and its subsequent performance in PEC water splitting was investigated. The work contributes to advancement of scalable and efficient fabrication technique for developing energy converting photoactive materials.


Asunto(s)
Nanoestructuras , Óxido de Zinc , Óxido de Zinc/química , Agua/química , Nanoestructuras/química , Compuestos de Estaño/química
19.
Environ Pollut ; 341: 122878, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37967713

RESUMEN

The emergence of algal toxins in water ecosystems poses a significant ecological and human health concern. These toxins, produced by various algal species, can lead to harmful algal blooms, and have far-reaching consequences on biodiversity, food chains, and water quality. This review explores the types and sources of algal toxins, their ecological impacts, and the associated human health risks. Additionally, the review delves into the potential of bioremediation strategies to mitigate the effects of algal toxins. It discusses the role of microorganisms, enzymes, and algal-bacterial interactions in toxin removal, along with engineering approaches such as advanced oxidation processes and adsorbent utilization. Microbes and enzymes have been studied for their environmentally friendly and biocompatible properties, which make them useful for controlling or removing harmful algae and their toxins. The challenges and limitations of bioremediation are examined, along with case studies highlighting successful toxin control efforts. Finally, the review outlines future prospects, emerging technologies, and the need for continued research to effectively address the complex issue of algal toxins and their ecological significance.


Asunto(s)
Ecosistema , Floraciones de Algas Nocivas , Humanos , Biodegradación Ambiental , Calidad del Agua
20.
Chem Soc Rev ; 52(24): 8500-8530, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37999922

RESUMEN

Advances in microfluidic device miniaturization and system integration contribute to the development of portable, handheld, and smartphone-compatible devices. These advancements in diagnostics have the potential to revolutionize the approach to detect and respond to future pandemics. Accordingly, herein, recent advances in point-of-care testing (POCT) of coronavirus disease 2019 (COVID-19) using various microdevices, including lateral flow assay strips, vertical flow assay strips, microfluidic channels, and paper-based microfluidic devices, are reviewed. However, visual determination of the diagnostic results using only microdevices leads to many false-negative results due to the limited detection sensitivities of these devices. Several POCT systems comprising microdevices integrated with portable optical readers have been developed to address this issue. Since the outbreak of COVID-19, effective POCT strategies for COVID-19 based on optical detection methods have been established. They can be categorized into fluorescence, surface-enhanced Raman scattering, surface plasmon resonance spectroscopy, and wearable sensing. We introduced next-generation pandemic sensing methods incorporating artificial intelligence that can be used to meet global health needs in the future. Additionally, we have discussed appropriate responses of various testing devices to emerging infectious diseases and prospective preventive measures for the post-pandemic era. We believe that this review will be helpful for preparing for future infectious disease outbreaks.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , Inteligencia Artificial , Estudios Prospectivos , Pruebas en el Punto de Atención , Sistemas de Atención de Punto , Prueba de COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA