Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Drug Discov Today ; 29(3): 103907, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301799

RESUMEN

The development of protein kinase inhibitors (PKIs) has gained significance owing to their therapeutic potential for diseases like cancer. In addition, there has been a rise in refining kinase activity assays, each possessing unique biological and analytical characteristics crucial for PKI development. However, the PKI development pipeline experiences high attrition rates and approved PKIs exhibit unexploited potential because of variable patient responses. Enhancing PKI development efficiency involves addressing challenges related to understanding the PKI mechanism of action and employing biomarkers for precision medicine. Selecting appropriate kinase activity assays for these challenges can overcome these attrition rate issues. This review delves into the current obstacles in kinase inhibitor development and elucidates kinase activity assays that can provide solutions.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
2.
Angiogenesis ; 27(1): 37-49, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37493987

RESUMEN

Modern drug development increasingly requires comprehensive models that can be utilized in the earliest stages of compound and target discovery. Here we report a phenotypic screening exercise in a high-throughput Organ-on-a-Chip setup. We assessed the inhibitory effect of 1537 protein kinase inhibitors in an angiogenesis assay. Over 4000 micro-vessels were grown under perfusion flow in microfluidic chips, exposed to a cocktail of pro-angiogenic factors and subsequently exposed to the respective kinase inhibitors. Efficacy of compounds was evaluated by reduced angiogenic sprouting, whereas reduced integrity of the main micro-vessel was taken as a measure for toxicity. The screen yielded 53 hits with high anti-angiogenicity and low toxicity, of which 44 were previously unassociated with angiogenic pathways. This study demonstrates that Organ-on-a-Chip models can be screened in high numbers to identify novel compounds and targets. This will ultimately reduce bias in early-stage drug development and increases probability to identify first in class compounds and targets for today's intractable diseases.


Asunto(s)
Angiogénesis , Antineoplásicos , Humanos , Sistemas Microfisiológicos , Antineoplásicos/uso terapéutico , Neovascularización Patológica/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología
3.
Angiogenesis ; 25(4): 455-470, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35704148

RESUMEN

With recent progress in modeling liver organogenesis and regeneration, the lack of vasculature is becoming the bottleneck in progressing our ability to model human hepatic tissues in vitro. Here, we introduce a platform for routine grafting of liver and other tissues on an in vitro grown microvascular bed. The platform consists of 64 microfluidic chips patterned underneath a 384-well microtiter plate. Each chip allows the formation of a microvascular bed between two main lateral vessels by inducing angiogenesis. Chips consist of an open-top microfluidic chamber, which enables addition of a target tissue by manual or robotic pipetting. Upon grafting a liver microtissue, the microvascular bed undergoes anastomosis, resulting in a stable, perfusable vascular network. Interactions with vasculature were found in spheroids and organoids upon 7 days of co-culture with space of Disse-like architecture in between hepatocytes and endothelium. Veno-occlusive disease was induced by azathioprine exposure, leading to impeded perfusion of the vascularized spheroid. The platform holds the potential to replace animals with an in vitro alternative for routine grafting of spheroids, organoids, or (patient-derived) explants.


Asunto(s)
Microfluídica , Organoides , Animales , Azatioprina , Técnicas de Cocultivo , Humanos , Hígado , Microfluídica/métodos
5.
J Pharm Sci ; 110(4): 1601-1614, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33545187

RESUMEN

Proximal tubule epithelial cells (PTEC) are susceptible to drug-induced kidney injury (DIKI). Cell-based, two-dimensional (2D) in vitro PTEC models are often poor predictors of DIKI, probably due to the lack of physiological architecture and flow. Here, we assessed a high throughput, 3D microfluidic platform (Nephroscreen) for the detection of DIKI in pharmaceutical development. This system was established with four model nephrotoxic drugs (cisplatin, tenofovir, tobramycin and cyclosporin A) and tested with eight pharmaceutical compounds. Measured parameters included cell viability, release of lactate dehydrogenase (LDH) and N-acetyl-ß-d-glucosaminidase (NAG), barrier integrity, release of specific miRNAs, and gene expression of toxicity markers. Drug-transporter interactions for P-gp and MRP2/4 were also determined. The most predictive read outs for DIKI were a combination of cell viability, LDH and miRNA release. In conclusion, Nephroscreen detected DIKI in a robust manner, is compatible with automated pipetting, proved to be amenable to long-term experiments, and was easily transferred between laboratories. This proof-of-concept-study demonstrated the usability and reproducibility of Nephroscreen for the detection of DIKI and drug-transporter interactions. Nephroscreen it represents a valuable tool towards replacing animal testing and supporting the 3Rs (Reduce, Refine and Replace animal experimentation).


Asunto(s)
Túbulos Renales Proximales , Dispositivos Laboratorio en un Chip , Animales , Interacciones Farmacológicas , Humanos , Riñón , Reproducibilidad de los Resultados
6.
SLAS Technol ; 25(6): 585-597, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32576063

RESUMEN

Development of efficient drugs and therapies for the treatment of inflammatory conditions in the intestine is often hampered by the lack of reliable, robust, and high-throughput in vitro and in vivo models. Current models generally fail to recapitulate key aspects of the intestine, resulting in low translatability to the human situation. Here, an immunocompetent 3D perfused intestine-on-a-chip platform was developed and characterized for studying intestinal inflammation. Forty independent polarized 3D perfused epithelial tubular structures were grown from cells of mixed epithelial origin, including enterocytes (Caco-2) and goblet cells (HT29-MTX-E12). Immune cells THP-1 and MUTZ-3, which can be activated, were added to the system and assessed for cytokine release. Intestinal inflammation was mimicked through exposure to tumor necrosis factor-α (TNFα) and interleukin (IL)-1ß. The effects were quantified by measuring transepithelial electrical resistance (TEER) and proinflammatory cytokine secretion on the apical and basal sides. Cytokines induced an inflammatory state in the culture, as demonstrated by the impaired barrier function and increased IL-8 secretion. Exposure to the known anti-inflammatory drug TPCA-1 prevented the inflammatory state. The model provides biological modularity for key aspects of intestinal inflammation, making use of well-established cell lines. This allows robust assays that can be tailored in complexity to serve all preclinical stages in the drug discovery and development process.


Asunto(s)
Mucosa Intestinal , Dispositivos Laboratorio en un Chip , Células CACO-2 , Humanos , Intestinos
7.
ALTEX ; 37(1): 47-63, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31445503

RESUMEN

Lifestyle and genetic factors can lead to the development of atherosclerosis and, ultimately, cardiovascular adverse events. Rodent models are commonly used to investigate mechanism(s) of atherogenesis. However, the 3Rs principles, aiming to limit animal testing, encourage the scientific community to develop new physiologically relevant in vitro alternatives. Leveraging the 96-chip OrganoPlate®, a microfluidic platform, we have established a three-dimensional (3D) model of endothelial microvessels-on-a-chip under flow using primary human coronary arterial endothelial cells. As functional readout, we have set up an assay to measure the adhesion of monocytes to the lumen of perfused microvessels. For monitoring molecular changes in microvessels, we have established the staining and quantification of specific protein markers of inflammation and oxidative stress using high content imaging, as well as analyzed transcriptome changes using microarrays. To demonstrate its usefulness in systems toxicology, we leveraged our 3D vasculature-on-a-chip model to assess the impact of the Tobacco Heating System (THS) 2.2, a candidate modified risk tobacco product, and the 3R4F reference cigarette on the adhesion of monocytic cells to endothelial microvessels. Our results show that THS 2.2 aerosol-conditioned medium had a reduced effect on monocyte-endothelium adhesion compared with 3R4F smoke-conditioned medium. In conclusion, we have established a relevant 3D vasculature-on-a-chip model for investigating leukocyte-endothelial microvessel adhesion. A case study illustrates how the model can be used for product testing in the context of systems toxicology-based risk assessment. The current model and its potential further development options also open perspectives of applications in vascular disease research and drug discovery.


Asunto(s)
Alternativas al Uso de Animales , Adhesión Celular , Células Endoteliales/fisiología , Dispositivos Laboratorio en un Chip , Monocitos/fisiología , Vasos Coronarios/citología , Humanos , Imagenología Tridimensional , Técnicas de Cultivo de Tejidos
8.
Int J Mol Sci ; 20(22)2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31726729

RESUMEN

A common bottleneck in any drug development process is finding sufficiently accurate models that capture key aspects of disease development and progression. Conventional drug screening models often rely on simple 2D culture systems that fail to recapitulate the complexity of the organ situation. In this study, we show the application of a robust high throughput 3D gut-on-a-chip model for investigating hallmarks of inflammatory bowel disease (IBD). Using the OrganoPlate platform, we subjected enterocyte-like cells to an immune-relevant inflammatory trigger in order to recapitulate key events of IBD and to further investigate the suitability of this model for compound discovery and target validation activities. The induction of inflammatory conditions caused a loss of barrier function of the intestinal epithelium and its activation by increased cytokine production, two events observed in IBD physiopathology. More importantly, anti-inflammatory compound exposure prevented the loss of barrier function and the increased cytokine release. Furthermore, knockdown of key inflammatory regulators RELA and MYD88 through on-chip adenoviral shRNA transduction alleviated IBD phenotype by decreasing cytokine production. In summary, we demonstrate the routine use of a gut-on-a-chip platform for disease-specific aspects modeling. The approach can be used for larger scale disease modeling, target validation and drug discovery purposes.


Asunto(s)
Descubrimiento de Drogas , Enfermedades Inflamatorias del Intestino , Procedimientos Analíticos en Microchip , Modelos Biológicos , Células CACO-2 , Evaluación Preclínica de Medicamentos , Técnicas de Inactivación de Genes , Humanos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Dispositivos Laboratorio en un Chip , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo
9.
Oncoimmunology ; 8(10): e1631119, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31646076

RESUMEN

In patients with cancer, the functionality of Dendritic Cells (DC) is hampered by high levels of tumor-derived suppressive cytokines, which interfere with DC development and maturation. Poor DC development can limit the efficacy of immune checkpoint blockade and in vivo vaccination approaches. Interference in intracellular signaling cascades downstream from the receptors of major tumor-associated suppressive cytokines like IL-10 and IL-6, might improve DC development and activation, and thus enhance immunotherapy efficacy. We performed exploratory functional screens on arrays consisting of >1000 human kinase peptide substrates to identify pathways involved in DC development and its inhibition by IL-10 or IL-6. The resulting alterations in phosphorylation of the kinome substrate profile pointed to glycogen-synthase kinase-3ß (GSK3ß) as a pivotal kinase in both DC development and suppression. GSK3ß inhibition blocked human DC differentiation in vitro, which was accompanied by decreased levels of IL-12p70 secretion, and a reduced capacity for T cell priming. More importantly, adenoviral transduction of monocytes with a constitutively active form of GSK3ß induced resistance to the suppressive effects of IL-10 and melanoma-derived supernatants alike, resulting in improved DC development, accompanied by up-regulation of co-stimulatory markers, an increase in CD83 expression levels in mature DC, and diminished release of IL-10. Moreover, adenovirus-mediated intratumoral manipulation of this pathway in an in vivo melanoma model resulted in DC activation and recruitment, and in improved immune surveillance and tumor control. We propose the induction of constitutive GSK3ß activity as a novel therapeutic means to bolster DC functionality in the tumor microenvironment.

10.
Int J Mol Sci ; 20(18)2019 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-31546820

RESUMEN

Pancreatic Ductal Adenocarcinoma (PDAC) is one of the most lethal cancers due to a high chemoresistance and poor vascularization, which results in an ineffective systemic therapy. PDAC is characterized by a high intratumoral pressure, which is not captured by current 2D and 3D in vitro models. Here, we demonstrated a 3D microfluidic interstitial flow model to mimic the intratumoral pressure in PDAC. We found that subjecting the S2-028 PDAC cell line to interstitial flow inhibits the proliferation, while maintaining a high viability. We observed increased gemcitabine chemoresistance, with an almost nine-fold higher EC50 as compared to a monolayer culture (31 nM versus 277 nM), and an alleviated expression and function of the multidrug resistance protein (MRP) family. In conclusion, we developed a 3D cell culture modality for studying intratissue pressure and flow that exhibits more predictive capabilities than conventional 2D cell culture and is less time-consuming, and more scalable and accessible than animal models. This increase in microphysiological relevance might support improved efficiency in the drug development pipeline.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Desoxicitidina/análogos & derivados , Resistencia a Antineoplásicos/efectos de los fármacos , Intestino Delgado/metabolismo , Técnicas Analíticas Microfluídicas , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Desoxicitidina/farmacología , Humanos , Intestino Delgado/patología , Dispositivos Laboratorio en un Chip , Neoplasias Pancreáticas/patología , Gemcitabina
11.
AAPS J ; 20(5): 90, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30109442

RESUMEN

Proximal tubules in the kidney play a crucial role in reabsorbing and eliminating substrates from the body into the urine, leading to high local concentrations of xenobiotics. This makes the proximal tubule a major target for drug toxicity that needs to be evaluated during the drug development process. Here, we describe an advanced in vitro model consisting of fully polarized renal proximal tubular epithelial cells cultured in a microfluidic system. Up to 40 leak-tight tubules were cultured on this platform that provides access to the basolateral as well as the apical side of the epithelial cells. Exposure to the nephrotoxicant cisplatin caused a dose-dependent disruption of the epithelial barrier, a decrease in viability, an increase in effluent LDH activity, and changes in expression of tight-junction marker zona-occludence 1, actin, and DNA-damage marker H2A.X, as detected by immunostaining. Activity and inhibition of the efflux pumps P-glycoprotein (P-gp) and multidrug resistance protein (MRP) were demonstrated using fluorescence-based transporter assays. In addition, the transepithelial transport function from the basolateral to the apical side of the proximal tubule was studied. The apparent permeability of the fluorescent P-gp substrate rhodamine 123 was decreased by 35% by co-incubation with cyclosporin A. Furthermore, the activity of the glucose transporter SGLT2 was demonstrated using the fluorescent glucose analog 6-NBDG which was sensitive to inhibition by phlorizin. Our results demonstrate that we developed a functional 3D perfused proximal tubule model with advanced renal epithelial characteristics that can be used for drug screening studies.


Asunto(s)
Técnicas de Cultivo de Célula , Células Epiteliales/efectos de los fármacos , Enfermedades Renales/inducido químicamente , Túbulos Renales Proximales/efectos de los fármacos , Moduladores del Transporte de Membrana/toxicidad , Proteínas de Transporte de Membrana/efectos de los fármacos , Perfusión , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transporte Biológico , Línea Celular , Polaridad Celular , Cisplatino/toxicidad , Ciclosporina/toxicidad , Relación Dosis-Respuesta a Droga , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Dispositivos Laboratorio en un Chip , Proteínas de Transporte de Membrana/metabolismo , Técnicas Analíticas Microfluídicas , Florizina/toxicidad , Transportador 2 de Sodio-Glucosa/efectos de los fármacos , Transportador 2 de Sodio-Glucosa/metabolismo , Inhibidores del Cotransportador de Sodio-Glucosa 2/toxicidad , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo , Uniones Estrechas/patología
12.
J Proteome Res ; 17(4): 1654-1663, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29457462

RESUMEN

We show that parallel reaction monitoring (PRM) can be used for exact quantification of phosphorylation ratios of proteins using stable-isotope-labeled peptides. We have compared two different PRM approaches on a digest of a U87 cell culture, namely, direct-PRM (tryptic digest measured by PRM without any further sample preparation) and TiO2-PRM (tryptic digest enriched with TiO2 cartridges, followed by PRM measurement); these approaches are compared for the following phosphorylation sites: neuroblast differentiation-associated protein (AHNAK S5480-p), calcium/calmodulin-dependent protein kinase type II subunit delta (CAMK2D T337-p), and epidermal growth factor receptor (EGFR S1166-p). A reproducible percentage of phosphorylation could be determined (CV 6-13%) using direct-PRM or TiO2-PRM. In addition, we tested the approaches in a cell culture experiment in which U87 cells were deprived of serum. As a "gold standard" we included immune precipitation of EGFR followed by PRM (IP-PRM). For EGFR (S1166) and AHNAK (S5480) a statistical significant change in the percentage of phosphorylation could be observed as a result of serum deprivation; for EGFR (S1166) this change was observed for both TiO2-PRM and IP-PRM. The presented approach has the potential to multiplex and to quantify the ratio of phosphorylation in a single analysis.


Asunto(s)
Espectrometría de Masas/métodos , Fosforilación , Línea Celular , Receptores ErbB/metabolismo , Humanos , Marcaje Isotópico , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Péptidos
13.
BMC Cancer ; 17(1): 709, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29096610

RESUMEN

BACKGROUND: Breast cancer is the most common invasive cancer among women. Currently, there are only a few models used for therapy selection, and they are often poor predictors of therapeutic response or take months to set up and assay. In this report, we introduce a microfluidic OrganoPlate® platform for extracellular matrix (ECM) embedded tumor culture under perfusion as an initial study designed to investigate the feasibility of adapting this technology for therapy selection. METHODS: The triple negative breast cancer cell lines MDA-MB-453, MDA-MB-231 and HCC1937 were selected based on their different BRCA1 and P53 status, and were seeded in the platform. We evaluate seeding densities, ECM composition (Matrigel®, BME2rgf, collagen I) and biomechanical (perfusion vs static) conditions. We then exposed the cells to a series of anti-cancer drugs (paclitaxel, olaparib, cisplatin) and compared their responses to those in 2D cultures. Finally, we generated cisplatin dose responses in 3D cultures of breast cancer cells derived from 2 PDX models. RESULTS: The microfluidic platform allows the simultaneous culture of 96 perfused micro tissues, using limited amounts of material, enabling drug screening of patient-derived material. 3D cell culture viability is improved by constant perfusion of the medium. Furthermore, the drug response of these triple negative breast cancer cells was attenuated by culture in 3D and differed from that observed in 2D substrates. CONCLUSIONS: We have investigated the use of a high-throughput organ-on-a-chip platform to select therapies. Our results have raised the possibility to use this technology in personalized medicine to support selection of appropriate drugs and to predict response to therapy in a real time fashion.


Asunto(s)
Antineoplásicos/farmacología , Técnicas de Cultivo de Célula/métodos , Matriz Extracelular/metabolismo , Microfluídica/métodos , Proteína BRCA1/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cisplatino/farmacología , Colágeno , Combinación de Medicamentos , Femenino , Humanos , Laminina , Mutación , Evaluación de Resultado en la Atención de Salud/métodos , Paclitaxel/farmacología , Ftalazinas/farmacología , Piperazinas/farmacología , Pronóstico , Proteoglicanos , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
14.
Nat Commun ; 8(1): 262, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28811479

RESUMEN

In vitro models that better reflect in vivo epithelial barrier (patho-)physiology are urgently required to predict adverse drug effects. Here we introduce extracellular matrix-supported intestinal tubules in perfused microfluidic devices, exhibiting tissue polarization and transporter expression. Forty leak-tight tubules are cultured in parallel on a single plate and their response to pharmacological stimuli is recorded over 125 h using automated imaging techniques. A study comprising 357 gut tubes is performed, of which 93% are leak tight before exposure. EC50-time curves could be extracted that provide insight into both concentration and exposure time response. Full compatibility with standard equipment and user-friendly operation make this Organ-on-a-Chip platform readily applicable in routine laboratories.Efforts to determine the effects of drugs on epithelial barriers could benefit from better in vitro models. Here the authors develop a microfluidic device supporting the growth and function of extracellular matrix-supported intestinal tubules, and evaluate the effect of staurosporine and acetylsalicylic acid on barrier integrity.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Mucosa Intestinal/metabolismo , Técnicas Analíticas Microfluídicas/métodos , Células CACO-2 , Técnicas de Cultivo de Célula/instrumentación , Humanos , Mucosa Intestinal/química , Cinética , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/instrumentación
15.
Sci Rep ; 6: 38856, 2016 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-27934939

RESUMEN

With great advances in the field of in vitro brain modelling, the challenge is now to implement these technologies for development and evaluation of new drug candidates. Here we demonstrate a method for culturing three-dimensional networks of spontaneously active neurons and supporting glial cells in a microfluidic platform. The high-throughput nature of the platform in combination with its compatibility with all standard laboratory equipment allows for parallel evaluation of compound effects.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Ensayos Analíticos de Alto Rendimiento/métodos , Dispositivos Laboratorio en un Chip , Células-Madre Neurales/citología , Neuroglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Organoides/efectos de los fármacos , Potenciales de Acción , Forma de la Célula , Técnicas de Cocultivo , Colágeno , Combinación de Medicamentos , Humanos , Células Madre Pluripotentes Inducidas/citología , Laminina , Neuritas/ultraestructura , Neurogénesis , Neuroglía/citología , Neuronas/citología , Neurotoxinas/farmacología , Proteoglicanos
16.
Oncotarget ; 7(36): 58435-58444, 2016 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-27533080

RESUMEN

BACKGROUND: Glioblastoma is the most malignant tumor of the central nervous system and still lacks effective treatment. This study explores mutational biomarkers of 11 drugs targeting either the RTK/Ras/PI3K, the p53 or the Rb pathway using 25 patient-derived glioblastoma stem-like cell cultures (GSCs). RESULTS: We found that TP53 mutated GSCs were approximately 3.5 fold more sensitive to dual inhibition of mammalian target of rapamycin complex 1 and 2 (mTORC1/2) compared to wild type GSCs. We identified that Bcl-2(Thr56/Ser70) phosphorylation contributed to the resistance of TP53 wild type GSCs against dual mTORC1/2 inhibition. The Bcl-2 inhibitor ABT-263 (navitoclax) increased sensitivity to the mTORC1/2 inhibitor AZD8055 in TP53 wild type GSCs, while sensitivity to AZD8055 in TP53 mutated GSCs remained unchanged. CONCLUSION: Our data suggest that Bcl-2 confers resistance to mTORC1/2 inhibitors in TP53 wild type GSCs and that combined inhibition of both mTORC1/2 and Bcl-2 is worthwhile to explore further in TP53 wild type glioblastomas, whereas in TP53 mutated glioblastomas dual mTORC1/2 inhibitors should be explored.


Asunto(s)
Neoplasias Encefálicas/genética , Resistencia a Antineoplásicos , Glioblastoma/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 2 de la Rapamicina/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/metabolismo , Compuestos de Anilina/farmacología , Biomarcadores de Tumor , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Estudios de Cohortes , Análisis Mutacional de ADN , Ensayos de Selección de Medicamentos Antitumorales , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Morfolinas/química , Mutación , Células Madre Neoplásicas/citología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteoma , Sulfonamidas/farmacología , Serina-Treonina Quinasas TOR/metabolismo
17.
Sci Rep ; 6: 26695, 2016 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-27225531

RESUMEN

Massive parallel analysis using array technology has become the mainstay for analysis of genomes and transcriptomes. Analogously, the predominance of phosphorylation as a regulator of cellular metabolism has fostered the development of peptide arrays of kinase consensus substrates that allow the charting of cellular phosphorylation events (often called kinome profiling). However, whereas the bioinformatical framework for expression array analysis is well-developed, no advanced analysis tools are yet available for kinome profiling. Especially intra-array and interarray normalization of peptide array phosphorylation remain problematic, due to the absence of "housekeeping" kinases and the obvious fallacy of the assumption that different experimental conditions should exhibit equal amounts of kinase activity. Here we describe the development of analysis tools that reliably quantify phosphorylation of peptide arrays and that allow normalization of the signals obtained. We provide a method for intraslide gradient correction and spot quality control. We describe a novel interarray normalization procedure, named repetitive signal enhancement, RSE, which provides a mathematical approach to limit the false negative results occuring with the use of other normalization procedures. Using in silico and biological experiments we show that employing such protocols yields superior insight into cellular physiology as compared to classical analysis tools for kinome profiling.


Asunto(s)
Fosfoproteínas/metabolismo , Análisis por Matrices de Proteínas/métodos , Femenino , Humanos , Masculino , Fosfoproteínas/análisis , Fosforilación
18.
PLoS One ; 11(2): e0149193, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26881744

RESUMEN

Regulatory T cells (Treg) are essential for T cell homeostasis and maintenance of peripheral tolerance. They prevent activation of auto-reactive T effector cells (Teff) in the context of autoimmunity and allergy. Otherwise, Treg also inhibit effective immune responses against tumors. Besides a number of Treg-associated molecules such as Foxp3, CTLA-4 or GARP, known to play critical roles in Treg differentiation, activation and function, the involvement of additional regulatory elements is suggested. Herein, kinase activities seem to play an important role in Treg fine tuning. Nevertheless, our knowledge regarding the complex intracellular signaling pathways controlling phenotype and function of Treg is still limited and based on single kinase cascades so far. To gain a more comprehensive insight into the pathways determining Treg function we performed kinome profiling using a phosphorylation-based kinome array in human Treg at different activation stages compared to Teff. Here we have determined intriguing quantitative differences in both populations. Resting and activated Treg showed an altered pattern of CD28-dependent kinases as well as of those involved in cell cycle progression. Additionally, significant up-regulation of distinct kinases such as EGFR or CK2 in activated Treg but not in Teff not only resemble data we obtained in previous studies in the murine system but also suggest that those specific molecular activation patterns can be used for definition of the activation and functional state of human Treg. Taken together, detailed investigation of kinome profiles opens the possibility to identify novel molecular mechanisms for a better understanding of Treg biology but also for development of effective immunotherapies against unwanted T cell responses in allergy, autoimmunity and cancer.


Asunto(s)
Proteínas Quinasas/metabolismo , Proteómica , Transducción de Señal , Linfocitos T Reguladores/enzimología , Adulto , Western Blotting , Proteínas del Citoesqueleto/metabolismo , Receptores ErbB/metabolismo , Humanos , Modelos Lineales , Activación de Linfocitos/inmunología , Reacción en Cadena en Tiempo Real de la Polimerasa
19.
Curr Opin Biotechnol ; 35: 118-26, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26094109

RESUMEN

The transition from 2D to 3D cell culture techniques is an important step in a trend towards better biomimetic tissue models. Microfluidics allows spatial control over fluids in micrometer-sized channels has become a valuable tool to further increase the physiological relevance of 3D cell culture by enabling spatially controlled co-cultures, perfusion flow and spatial control over of signaling gradients. This paper reviews most important developments in microfluidic 3D culture since 2012. Most efforts were exerted in the field of vasculature, both as a tissue on its own and as part of cancer models. We observe that the focus is shifting from tool building to implementation of specific tissue models. The next big challenge for the field is the full validation of these models and subsequently the implementation of these models in drug development pipelines of the pharmaceutical industry and ultimately in personalized medicine applications.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Microfluídica/métodos , Animales , Biomimética , Técnicas de Cocultivo , Humanos , Técnicas Analíticas Microfluídicas , Neoplasias , Técnicas de Cultivo de Tejidos
20.
Lab Chip ; 14(17): 3334-40, 2014 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-24989781

RESUMEN

A microfluidic passive valving platform is introduced that has full control over the stability of each valve. The concept is based on phaseguides, which are small ridges at the bottom of a channel acting as pinning barriers. It is shown that the angle between the phaseguide and the channel sidewall is a measure of the stability of the phaseguide. The relationship between the phaseguide-wall angle and the stability is characterized numerically, analytically and experimentally. Liquid routing is enabled by using multiple phaseguide with different stability values. This is demonstrated by filling complex chamber matrices. As an ultimate demonstration of control, a 400-chamber network is used as a pixel array. It is the first time that differential stability is demonstrated in the realm of passive valving. It ultimately enables microfluidic devices for massive data generation in a low-cost disposable format.


Asunto(s)
Microfluídica/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...