Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Protoc ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532070

RESUMEN

The bone marrow supports and regulates hematopoiesis, responding to physiological requirements for blood cell production over ontogeny and during pathological challenges. Interactions between hematopoietic cells and niche components are challenging to study mechanistically in the human context, but are important to delineate in order to explore the pathobiology of blood and bone marrow disorders. Organoids are proving transformative in many research settings, but an accurate human bone marrow model incorporating multiple hematopoietic and stromal elements has been lacking. This protocol describes a method to generate three-dimensional, multilineage bone marrow organoids from human induced pluripotent stem cells (hiPSCs), detailing the steps for the directed differentiation of hiPSCs using a series of cytokine cocktails and hydrogel embedding. Over 18 days of differentiation, hiPSCs yield the key lineages that are present in central myelopoietic bone marrow, organized in a well-vascularized architecture that resembles native hematopoietic tissues. This presents a robust, in vitro system that can model healthy and perturbed hematopoiesis in a scalable three-dimensional microenvironment. Bone marrow organoids also support the growth of immortalized cell lines and primary cells from healthy donors and patients with myeloid and lymphoid cancers, including cell types that are poorly viable in standard culture systems. Moreover, we discuss assays for the characterization of organoids, including interrogation of pathogenic remodeling using recombinant TGF-ß treatment, and methods for organoid engraftment with exogenous cells. This protocol can be readily adapted to specific experimental requirements, can be easily implemented by users with tissue culture experience and does not require access to specialist equipment.

2.
Cell Mol Life Sci ; 81(1): 44, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38236412

RESUMEN

The platelet receptors, glycoprotein VI (GPVI) and integrin α2ß1 jointly control collagen-dependent thrombus formation via protein tyrosine kinases. It is unresolved to which extent the ITIM (immunoreceptor tyrosine-based inhibitory motif) receptor PECAM1 and its downstream acting protein tyrosine phosphatase PTPN11 interfere in this process. Here, we hypothesized that integrin α2ß1 has a co-regulatory role in the PECAM1- and PTPN11-dependent restraint of thrombus formation. We investigated platelet activation under flow on collagens with a different GPVI dependency and using integrin α2ß1 blockage. Blood was obtained from healthy subjects and from patients with Noonan syndrome with a gain-of-function mutation of PTPN11 and variable bleeding phenotype. On collagens with decreasing GPVI activity (types I, III, IV), the surface-dependent inhibition of PECAM1 did not alter thrombus parameters using control blood. Blockage of α2ß1 generally reduced thrombus parameters, most effectively on collagen IV. Strikingly, simultaneous inhibition of PECAM1 and α2ß1 led to a restoration of thrombus formation, indicating that the suppressing signaling effect of PECAM1 is masked by the platelet-adhesive receptor α2ß1. Blood from 4 out of 6 Noonan patients showed subnormal thrombus formation on collagen IV. In these patients, effects of α2ß1 blockage were counterbalanced by PECAM1 inhibition to a normal phenotype. In summary, we conclude that the suppression of GPVI-dependent thrombus formation by either PECAM1 or a gain-of-function of PTPN11 can be overruled by α2ß1 engagement.


Asunto(s)
Integrina alfa2beta1 , Trombosis , Humanos , Integrina alfa2beta1/genética , Plaquetas , Glicoproteínas , Colágeno , Trombosis/genética
3.
J Thromb Haemost ; 21(8): 2260-2267, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37150294

RESUMEN

BACKGROUND: Collagen-induced platelet activation is predominantly mediated by glycoprotein (GP) VI through formation of receptor clusters that coincide with the accumulation of signaling molecules and are hypothesized to drive strong and sustained platelet activation. OBJECTIVES: To determine the importance of GPVI clusters for thrombus formation in whole blood under shear. METHODS: We utilized whole blood microfluidics and an anti-GPVI nanobody (Nb), Nb28, labeled with AlexaFluor 488, to assess the distribution of GPVI on the surface of platelets adhering to a range of collagen-like substrates with different platelet activation potentials. RESULTS: Automated analysis of GPVI surface distribution on platelets supported the hypothesis that there is a relationship between GPVI cluster formation, thrombus size, and phosphatidylserine (PS) exposure. Substrates that supported the formation of macroclusters also induced significantly bigger aggregates, with increased amounts of PS-exposing platelets in comparison to substrates where no GPVI clusters were detected. Furthermore, we demonstrate that only direct inhibition of GPVI binding, but not of downstream signaling, is able to disrupt cluster formation. CONCLUSION: Labeled anti-GPVI Nb28 permits visualization of GPVI clustering under flow conditions. Furthermore, whilst inhibition of downstream signaling does not affect clustering, it does prevent thrombus formation. Therefore, GPVI macroclustering is a prerequisite for thrombus formation and platelet activation, namely, PS exposure, on highly GPVI-dependent collagen surfaces.


Asunto(s)
Plaquetas , Trombosis , Humanos , Plaquetas/metabolismo , Fosfatidilserinas/metabolismo , Glicoproteínas de Membrana Plaquetaria/metabolismo , Activación Plaquetaria , Colágeno/metabolismo , Agregación Plaquetaria
4.
Thromb Haemost ; 123(6): 597-612, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36807826

RESUMEN

BACKGROUND: In secondary cardiovascular disease prevention, treatments blocking platelet-derived secondary mediators pose a risk of bleeding. Pharmacological interference of the interaction of platelets with exposed vascular collagens is an attractive alternative, with clinical trials ongoing. Antagonists of the collagen receptors, glycoprotein VI (GPVI), and integrin α2ß1, include recombinant GPVI-Fc dimer construct Revacept, 9O12 mAb based on the GPVI-blocking reagent Glenzocimab, Syk tyrosine-kinase inhibitor PRT-060318, and anti-α2ß1 mAb 6F1. No direct comparison has been made of the antithrombic potential of these drugs. METHODS: Using a multiparameter whole-blood microfluidic assay, we compared the effects of Revacept, 9O12-Fab, PRT-060318, or 6F1 mAb intervention with vascular collagens and collagen-related substrates with varying dependencies on GPVI and α2ß1. To inform on Revacept binding to collagen, we used fluorescent-labelled anti-GPVI nanobody-28. RESULTS AND CONCLUSION: In this first comparison of four inhibitors of platelet-collagen interactions with antithrombotic potential, we find that at arterial shear rate: (1) the thrombus-inhibiting effect of Revacept was restricted to highly GPVI-activating surfaces; (2) 9O12-Fab consistently but partly inhibited thrombus size on all surfaces; (3) effects of GPVI-directed interventions were surpassed by Syk inhibition; and (4) α2ß1-directed intervention with 6F1 mAb was strongest for collagens where Revacept and 9O12-Fab were limitedly effective. Our data hence reveal a distinct pharmacological profile for GPVI-binding competition (Revacept), GPVI receptor blockage (9O12-Fab), GPVI signaling (PRT-060318), and α2ß1 blockage (6F1 mAb) in flow-dependent thrombus formation, depending on the platelet-activating potential of the collagen substrate. This work thus points to additive antithrombotic action mechanisms of the investigated drugs.


Asunto(s)
Integrina alfa2beta1 , Trombosis , Humanos , Integrina alfa2beta1/metabolismo , Glicoproteínas de Membrana Plaquetaria/metabolismo , Fibrinolíticos/farmacología , Colágeno/metabolismo , Plaquetas/metabolismo , Trombosis/prevención & control
5.
J Thromb Haemost ; 21(2): 317-328, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36700508

RESUMEN

BACKGROUND: The platelet-signaling receptor glycoprotein VI (GPVI) is a promising antithrombotic target. We have previously raised a series of high-affinity nanobodies (Nbs) against GPVI and identified Nb2, Nb21, and Nb35 as potent GPVI inhibitors. The Nb2 binding site has been mapped to the D1 domain, which is directly adjacent to the CRP binding site. Ligand-binding complementary determining region 3 has only 15% conservation between all 3 Nbs. OBJECTIVES: To map the binding sites of Nb21 and Nb35 on GPVI. METHODS: We determined the X-ray crystal structure of the D1 and D2 extracellular domains of the GPVI-Nb35 complex. We then looked at the effects of various GPVI mutations on the ability of Nbs to inhibit collagen binding and GPVI signaling using surface binding assays and transfected cell lines. RESULTS: The crystal structure of GPVI bound to Nb35 was solved. GPVI was present as a monomer, and the D1+D2 conformation was comparable to that in the dimeric structure. Arg46, Tyr47, and Ala57 are common residues on GPVI targeted by both Nb2 and Nb35. Mutating Arg46 to an Ala abrogated the ability of Nb2, Nb21, and Nb35 to inhibit collagen-induced GPVI signaling and blocked the binding of all 3 Nbs. In addition, Arg60 was found to reduce Nb21 inhibition but not the inhibition Nb2 or Nb35. CONCLUSIONS: These findings reveal key residues involved in the high-affinity binding of GPVI inhibitors and negate the idea that GPVI dimerization induces a conformational change required for ligand binding.


Asunto(s)
Colágeno , Glicoproteínas de Membrana Plaquetaria , Humanos , Dimerización , Unión Proteica , Ligandos , Glicoproteínas de Membrana Plaquetaria/metabolismo , Sitios de Unión , Colágeno/metabolismo , Plaquetas/metabolismo
6.
Int J Mol Sci ; 23(15)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35955827

RESUMEN

Glycoprotein (GP)VI and integrin αIIbß3 are key signaling receptors in collagen-dependent platelet aggregation and in arterial thrombus formation under shear. The multiple downstream signaling pathways are still poorly understood. Here, we focused on disclosing the integrin-dependent roles of focal adhesion kinase (protein tyrosine kinase 2, PTK2), the shear-dependent collagen receptor GPR56 (ADGRG1 gene), and calcium and integrin-binding protein 1 (CIB1). We designed and synthetized peptides that interfered with integrin αIIb binding (pCIB and pCIBm) or mimicked the activation of GPR56 (pGRP). The results show that the combination of pGRP with PTK2 inhibition or of pGRP with pCIB > pCIBm in additive ways suppressed collagen- and GPVI-dependent platelet activation, thrombus buildup, and contraction. Microscopic thrombus formation was assessed by eight parameters (with script descriptions enclosed). The suppressive rather than activating effects of pGRP were confined to blood flow at a high shear rate. Blockage of PTK2 or interference of CIB1 no more than slightly affected thrombus formation at a low shear rate. Peptides did not influence GPVI-induced aggregation and Ca2+ signaling in the absence of shear. Together, these data reveal a shear-dependent signaling axis of PTK2, integrin αIIbß3, and CIB1 in collagen- and GPVI-dependent thrombus formation, which is modulated by GPR56 and exclusively at high shear. This work thereby supports the role of PTK2 in integrin αIIbß3 activation and signaling.


Asunto(s)
Complejo GPIIb-IIIa de Glicoproteína Plaquetaria , Trombosis , Plaquetas/metabolismo , Colágeno/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Péptidos/metabolismo , Péptidos/farmacología , Activación Plaquetaria , Adhesividad Plaquetaria , Agregación Plaquetaria , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Glicoproteínas de Membrana Plaquetaria/metabolismo , Trombosis/metabolismo
7.
J Thromb Haemost ; 20(11): 2617-2631, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35894121

RESUMEN

BACKGROUND: The collagen receptor glycoprotein VI (GPVI) is an attractive antiplatelet target due to its critical role in thrombosis but minor involvement in hemostasis. OBJECTIVE: To investigate GPVI receptor involvement in platelet activation by collagen-I and atherosclerotic plaque using novel blocking and non-blocking anti-GPVI nanobodies (Nbs). METHODS: Nb effects on GPVI-mediated signaling and function were assessed by western blot and whole blood thrombus formation under flow. GPVI clustering was visualized in thrombi using fluorescently labeled Nb28. RESULTS: Under arterial shear, inhibitory Nb2 blocks thrombus formation and platelet activation on collagen and plaque, but only reduces adhesion on plaque. In contrast, adhesion on collagen, but not plaque, is decreased by blocking integrin α2ß1. Adhesion on plaque is maintained despite inhibition of integrins αvß3, α5ß1, α6ß1, and αIIbß3. Only combined αIIbß3 and α2ß1 blockade inhibits adhesion and thrombus formation to the same extent as Nb2 alone. Nb2 prevents GPVI signaling, with loss of Syk, Lat, and PLCÉ£2 phosphorylation, especially to plaque stimulation. Non-blocking fluorescently labeled Nb28 reveals distinct GPVI distribution patterns on collagen and plaque, with GPVI clustering clearly apparent on collagen fibers and less frequent on plaque. Clustering on collagen fibers is lost in the presence of Nb2. CONCLUSIONS: This work emphasizes the critical difference in GPVI-mediated platelet activation by plaque and collagen; it highlights the importance of GPVI clustering for downstream signaling and thrombus formation. Labeled Nb28 is a novel tool for providing mechanistic insight into this process and the data suggest Nb2 warrants further investigation as a potential anti-thrombotic agent.


Asunto(s)
Placa Aterosclerótica , Anticuerpos de Dominio Único , Trombosis , Humanos , Glicoproteínas de Membrana Plaquetaria/fisiología , Fosfolipasa C gamma , Integrina alfa2beta1 , Anticuerpos de Dominio Único/farmacología , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria , Colágeno/farmacología , Análisis por Conglomerados , Plaquetas , Agregación Plaquetaria
8.
Thromb Haemost ; 122(12): 1988-2000, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35817083

RESUMEN

C-type lectin-like receptor 2 (CLEC-2) is highly expressed on platelets and a subpopulation of myeloid cells, and is critical in lymphatic development. CLEC-2 has been shown to support thrombus formation at sites of inflammation, but to have a minor/negligible role in hemostasis. This identifies CLEC-2 as a promising therapeutic target in thromboinflammatory disorders, without hemostatic detriment. We utilized a GPIbα-Cre recombinase mouse for more restricted deletion of platelet-CLEC-2 than the previously used PF4-Cre mouse. clec1bfl/flGPIbα-Cre+ mice are born at a Mendelian ratio, with a mild reduction in platelet count, and present with reduced thrombus size post-FeCl3-induced thrombosis, compared to littermates. Antibody-mediated depletion of platelet count in C57BL/6 mice, to match clec1bfl/flGPIbα-Cre+ mice, revealed that the reduced thrombus size post-FeCl3-injury was due to the loss of CLEC-2, and not mild thrombocytopenia. Similarly, clec1bfl/flGPIbα-Cre+ mouse blood replenished with CLEC-2-deficient platelets ex vivo to match littermates had reduced aggregate formation when perfused over collagen at arterial flow rates. In contrast, platelet-rich thrombi formed following perfusion of human blood under flow conditions over collagen types I or III, atherosclerotic plaque, or inflammatory endothelial cells were unaltered in the presence of CLEC-2-blocking antibody, AYP1, or recombinant CLEC-2-Fc. The reduction in platelet aggregation observed in clec1bfl/flGPIbα-Cre+ mice during arterial thrombosis is mediated by the loss of CLEC-2 on mouse platelets. In contrast, CLEC-2 does not support thrombus generation on collagen, atherosclerotic plaque, or inflamed endothelial cells in human at arterial shear.


Asunto(s)
Placa Aterosclerótica , Trombosis , Ratones , Humanos , Animales , Agregación Plaquetaria , Activación Plaquetaria , Células Endoteliales , Ratones Endogámicos C57BL , Plaquetas , Lectinas Tipo C/genética
9.
Biomedicines ; 10(5)2022 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-35625720

RESUMEN

Platelets are key regulators of haemostasis, making platelet dysfunction a major driver of thrombosis. Numerous processes that determine platelet function are influenced by microRNAs (miRs). MiR-26b is one of the highest-expressed miRs in healthy platelets, and its expression in platelets is changed in a diseased state. However, the exact effect of this miR on platelet function has not been studied yet. In this study, we made use of a whole-body knockout of miR-26b in ApoE-deficient mice in order to determine its impact on platelet function, thrombus formation and platelet signalling both ex vivo and in vivo. We show that a whole-body deficiency of miR-26b exacerbated platelet adhesion and aggregation ex vivo. Additionally, in vivo, platelets adhered faster, and larger thrombi were formed in mice lacking miR-26b. Moreover, isolated platelets from miR-26b-deficient mice showed a hyperactivated Src and EGFR signalling. Taken together, we show here for the first time that miR-26b attenuates platelet adhesion and aggregation, possibly through Src and EGFR signalling.

10.
Blood ; 139(17): 2691-2705, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35313337

RESUMEN

The prevention and treatment of arterial thrombosis continue to be clinically challenging, and understanding the relevant molecular mechanisms in detail may facilitate the quest to identify novel targets and therapeutic approaches that improve protection from ischemic and bleeding events. The chemokine CXCL12 augments collagen-induced platelet aggregation by activating its receptor CXCR4. Here we show that inhibition of CXCR4 attenuates platelet aggregation induced by collagen or human plaque homogenate under static and arterial flow conditions by antagonizing the action of platelet-secreted CXCL12. We further show that platelet-specific CXCL12 deficiency in mice limits arterial thrombosis by affecting thrombus growth and stability without increasing tail bleeding time. Accordingly, neointimal lesion formation after carotid artery injury was attenuated in these mice. Mechanistically, CXCL12 activated via CXCR4 a signaling cascade involving Bruton's tyrosine kinase (Btk) that led to integrin αIIbß3 activation, platelet aggregation, and granule release. The heterodimeric interaction between CXCL12 and CCL5 can inhibit CXCL12-mediated effects as mimicked by CCL5-derived peptides such as [VREY]4. An improved variant of this peptide, i[VREY]4, binds to CXCL12 in a complex with CXCR4 on the surface of activated platelets, thereby inhibiting Btk activation and preventing platelet CXCL12-dependent arterial thrombosis. In contrast to standard antiplatelet therapies such as aspirin or P2Y12 inhibition, i[VREY]4 reduced CXCL12-induced platelet aggregation and yet did not prolong in vitro bleeding time. We provide evidence that platelet-derived CXCL12 is involved in arterial thrombosis and can be specifically targeted by peptides that harbor potential therapeutic value against atherothrombosis.


Asunto(s)
Plaquetas , Trombosis , Agammaglobulinemia Tirosina Quinasa/metabolismo , Animales , Plaquetas/metabolismo , Quimiocina CXCL12/metabolismo , Colágeno/metabolismo , Ratones , Activación Plaquetaria , Agregación Plaquetaria , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Trombosis/metabolismo
11.
Br J Haematol ; 196(6): 1388-1400, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35001370

RESUMEN

Patients referred for evaluation of bleeding symptoms occasionally have a prolonged platelet function analyser (PFA) closure time, without evidence for von Willebrand disease or impaired platelet aggregation. The aim of this study was to establish a shear-dependent platelet function defect in these patients. Patients were included based on high bleeding score and prior PFA prolongation. Common tests of von Willebrand factor (VWF) and platelet function and exome sequencing were performed. Microfluidic analysis of shear-dependent collagen-induced whole-blood thrombus formation was performed. In 14 PFA-only patients, compared to healthy volunteers, microfluidic tests showed significantly lower platelet adhesion and thrombus formation parameters. This was accompanied by lower integrin activation, phosphatidylserine exposure and P-selectin expression. Principal components analysis indicated VWF as primary explaining variable of PFA prolongation, whereas conventional platelet aggregation primarily explained the reduced thrombus parameters under shear. In five patients with severe microfluidic abnormalities, conventional platelet aggregation was in the lowest range of normal. No causal variants in Mendelian genes known to cause bleeding or platelet disorders were identified. Multiparameter assessment of whole-blood thrombus formation under shear indicates single or combined effects of low-normal VWF and low-normal platelet aggregation in these patients, suggesting a shear-dependent platelet function defect, not detected by static conventional haemostatic tests.


Asunto(s)
Trombosis , Enfermedades de von Willebrand , Plaquetas/metabolismo , Hemorragia , Hemostasis , Humanos , Agregación Plaquetaria , Pruebas de Función Plaquetaria , Factor de von Willebrand/genética , Factor de von Willebrand/metabolismo
12.
J Thromb Haemost ; 20(4): 936-950, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34936188

RESUMEN

BACKGROUND: Platelets are multifunctional cellular mediators in many physiological and pathophysiological processes such as thrombosis, angiogenesis, and inflammation. Several members of galectins, a family of carbohydrate-binding proteins with a broad range of immunomodulatory actions, have been reported to activate platelets. OBJECTIVE: In this study, we investigated the role of galectin-9 (Gal-9) as a novel ligand for platelet glycoprotein VI (GPVI) and C-type lectin-like receptor 2 (CLEC-2). METHODS: Platelet spreading, aggregation, and P-selectin expression in response to Gal-9 were measured in washed platelet suspensions via static adhesion assay, light transmission aggregometry, and flow cytometry, respectively. Solid-phase binding assay and protein phosphorylation studies were utilized to validate the interaction between Gal-9 and GPVI, and immunoprecipitation for detecting CLEC-2 phosphorylation. Wild-type (WT), GPVI-knockout (Gp6-/- ), and GPVI and CLEC-2-double knockout (Gp6-/- /Gp1ba-Cre-Clec1bfl/fl ) mice were used. RESULTS: We have shown that recombinant Gal-9 stimulates aggregation in human and mouse washed platelets dose-dependently. Platelets from both species adhere and spread on immobilized Gal-9 and express P-selectin. Gal-9 competitively inhibited the binding of human recombinant D1 and D2 domains of GPVI to collagen. Gal-9 stimulated tyrosine phosphorylation of CLEC-2 and proteins known to lie downstream of GPVI and CLEC-2 including spleen tyrosine kinase and linker of activated T cells in human platelets. GPVI-deficient murine platelets exhibited significantly impaired aggregation in response to Gal-9, which was further abrogated in GPVI and CLEC-2-double-deficient platelets. CONCLUSIONS: We have identified Gal-9 as a novel platelet agonist that induces activation through interaction with GPVI and CLEC-2.


Asunto(s)
Lectinas Tipo C , Selectina-P , Animales , Plaquetas/metabolismo , Proteínas Portadoras/metabolismo , Galectinas/metabolismo , Humanos , Lectinas Tipo C/metabolismo , Ratones , Selectina-P/metabolismo , Activación Plaquetaria , Agregación Plaquetaria , Glicoproteínas de Membrana Plaquetaria/metabolismo
14.
Blood ; 137(24): 3443-3453, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33512486

RESUMEN

Glycoprotein VI (GPVI) is the major signaling receptor for collagen on platelets. We have raised 54 nanobodies (Nb), grouped into 33 structural classes based on their complementary determining region 3 loops, against recombinant GPVI-Fc (dimeric GPVI) and have characterized their ability to bind recombinant GPVI, resting and activated platelets, and to inhibit platelet activation by collagen. Nbs from 6 different binding classes showed the strongest binding to recombinant GPVI-Fc, suggesting that there was not a single dominant class. The most potent 3, Nb2, 21, and 35, inhibited collagen-induced platelet aggregation with nanomolar half maximal inhibitory concentration (IC50) values and inhibited platelet aggregation under flow. The binding KD of the most potent Nb, Nb2, against recombinant monomeric and dimeric GPVI was 0.6 and 0.7 nM, respectively. The crystal structure of monomeric GPVI in complex with Nb2 revealed a binding epitope adjacent to the collagen-related peptide (CRP) binding groove within the D1 domain. In addition, a novel conformation of GPVI involving a domain swap between the D2 domains was observed. The domain swap is facilitated by the outward extension of the C-C' loop, which forms the domain swap hinge. The functional significance of this conformation was tested by truncating the hinge region so that the domain swap cannot occur. Nb2 was still able to displace collagen and CRP binding to the mutant, but signaling was abolished in a cell-based NFAT reporter assay. This demonstrates that the C-C' loop region is important for GPVI signaling but not ligand binding and suggests the domain-swapped structure may represent an active GPVI conformation.


Asunto(s)
Complejo Antígeno-Anticuerpo , Plaquetas , Glicoproteínas de Membrana Plaquetaria , Multimerización de Proteína , Anticuerpos de Dominio Único , Complejo Antígeno-Anticuerpo/química , Complejo Antígeno-Anticuerpo/metabolismo , Plaquetas/química , Plaquetas/metabolismo , Humanos , Activación Plaquetaria/efectos de los fármacos , Activación Plaquetaria/genética , Glicoproteínas de Membrana Plaquetaria/química , Glicoproteínas de Membrana Plaquetaria/genética , Glicoproteínas de Membrana Plaquetaria/metabolismo , Dominios Proteicos , Multimerización de Proteína/efectos de los fármacos , Multimerización de Proteína/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/farmacología
15.
Int J Mol Sci ; 20(11)2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-31181592

RESUMEN

Platelet interaction with collagens, via von Willebrand factor, is a potent trigger of shear-dependent thrombus formation mediated by subsequent engagement of the signaling collagen receptor glycoprotein (GP)VI, enforced by integrin α2ß1. Protein tyrosine kinase Syk is central in the GPVI-induced signaling pathway, leading to elevated cytosolic Ca2+. We aimed to determine the Syk-mediated thrombogenic activity of several collagen peptides and (fibrillar) type I and III collagens. High-shear perfusion of blood over microspots of these substances resulted in thrombus formation, which was assessed by eight parameters and was indicative of platelet adhesion, activation, aggregation, and contraction, which were affected by the Syk inhibitor PRT-060318. In platelet suspensions, only collagen peptides containing the consensus GPVI-activating sequence (GPO)n and Horm-type collagen evoked Syk-dependent Ca2+ rises. In whole blood under flow, Syk inhibition suppressed platelet activation and aggregation parameters for the collagen peptides with or without a (GPO)n sequence and for all of the collagens. Prediction models based on a regression analysis indicated a mixed role of GPVI in thrombus formation on fibrillar collagens, which was abolished by Syk inhibition. Together, these findings indicate that GPVI-dependent signaling through Syk supports platelet activation in thrombus formation on collagen-like structures regardless of the presence of a (GPO)n sequence.


Asunto(s)
Plaquetas/metabolismo , Colágeno/metabolismo , Glicoproteínas de Membrana Plaquetaria/metabolismo , Quinasa Syk/metabolismo , Trombosis/metabolismo , Plaquetas/efectos de los fármacos , Plaquetas/fisiología , Células Cultivadas , Colágeno/química , Ciclohexilaminas/farmacología , Humanos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Agregación Plaquetaria , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Quinasa Syk/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...