Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 614
Filtrar
1.
Clin Immunol ; : 110368, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39307482

RESUMEN

Autoinflammatory diseases, while having a variety of underlying causes, are mediated by dysfunctional innate immune responses. Therefore, standard treatments target innate cytokines or block their receptors. Despite excellent responses in some patients, first-line treatments fail in others, for reasons which remain to be understood. We studied the effects of IL-37, an anti-inflammatory cytokine, on immune cells using multi-omics profiling of 325 healthy adults. Our findings show that IL-37 is associated with inflammation control and generally reduced immune cell activity. Further, genetic variants in IL37 are associated with impaired trained immunity, a memory phenotype of innate immune cells contributing to autoinflammation. To underpin the medical potential of IL-37, an explorative cohort of seven autoinflammatory disorders was built. In vitro stimulation experiments argue for recombinant IL-37 as a potential therapy in IL-6-, and IL-22-driven conditions. Concluding, IL-37 is highlighted as a cytokine with broad anti-inflammatory functions, implicating its potential as therapeutic intervention.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39278362

RESUMEN

During the past decade, compelling evidence has accumulated demonstrating that innate immune cells can mount adaptive characteristics, leading to long-term changes in their function. This de-facto innate immune memory has been termed trained immunity. Trained immunity is mediated through extensive metabolic rewiring and epigenetic modifications, and has important effects in human diseases. While the upregulation of trained immunity by certain vaccines provides heterologous protection against infections, the inappropriate activation of trained immunity by endogenous stimuli contributes to the pathogenesis of inflammatory and neurodegenerative disorders. Development of vaccines that can induce both classical adaptive immunity and trained immunity may lead to a new generation of vaccines with increased efficacy. Activation of trained immunity can also lead to novel strategies for the treatment of cancer, while modulation of trained immunity can provide new approaches for the treatment of inflammatory diseases.

3.
Cell Immunol ; 403-404: 104862, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39159505

RESUMEN

Trained immunity is a long-lasting change in the responsiveness of innate immune cells, leading to a stronger response upon an unrelated secondary challenge. Epigenetic, transcriptional, and metabolic reprogramming contribute to the development of trained immunity. By investigating the impact of gene variants on trained immunity responses after Bacillus Calmette-Guérin (BCG) vaccination, we identified a strong association between polymorphisms in the RORA gene and BCG-induced trained immunity in PBMCs isolated from healthy human donors. RORα, encoded by the RORA gene in humans, is a nuclear receptor and a transcription factor, regulating genes involved in circadian rhythm, inflammation, cholesterol, and lipid metabolism. We found that natural RORα agonists in the circulation negatively correlate with the strength of trained immunity responses after BCG vaccination. Moreover, pharmacological inhibition of RORα in human PBMCs led to higher cytokine production capacity and boosted trained immunity induction by BCG. Blocking RORα activity also resulted in morphological changes and increased ROS and lactate production of BCG-trained cells. Blocking lactate dehydrogenase A (LDHA) and glycolysis with sodium oxamate reduced the cytokine production capacity of cells trained with a combination of BCG and the RORα agonist. In conclusion, this study highlights the potential role of RORα in trained immunity, and its impact on human vaccination and diseases should be further investigated.


Asunto(s)
Vacuna BCG , Inmunidad Innata , Leucocitos Mononucleares , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Humanos , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Vacuna BCG/inmunología , Inmunidad Innata/inmunología , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Citocinas/metabolismo , Adulto , Masculino , Femenino , Vacunación , Células Cultivadas , Mycobacterium bovis/inmunología , Glucólisis/inmunología , Inmunidad Entrenada
4.
Cell Rep ; 43(9): 114664, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39178113

RESUMEN

Trained immunity is characterized by histone modifications and metabolic changes in innate immune cells following exposure to inflammatory signals, leading to heightened responsiveness to secondary stimuli. Although our understanding of the molecular regulation of trained immunity has increased, the role of adaptive immune cells herein remains largely unknown. Here, we show that T cells modulate trained immunity via cluster of differentiation 40-tissue necrosis factor receptor-associated factor 6 (CD40-TRAF6) signaling. CD40-TRAF6 inhibition modulates functional, transcriptomic, and metabolic reprogramming and modifies histone 3 lysine 4 trimethylation associated with trained immunity. Besides in vitro studies, we reveal that single-nucleotide polymorphisms in the proximity of CD40 are linked to trained immunity responses in vivo and that combining CD40-TRAF6 inhibition with cytotoxic T lymphocyte antigen 4-immunoglobulin (CTLA4-Ig)-mediated co-stimulatory blockade induces long-term graft acceptance in a murine heart transplantation model. Combined, our results reveal that trained immunity is modulated by CD40-TRAF6 signaling between myeloid and adaptive immune cells and that this can be leveraged for therapeutic purposes.

5.
Res Sq ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39108482

RESUMEN

Background: Urate concentration and the physiological regulation of urate homeostasis exhibit clear sex differences. DNA methylation has been shown to explain a substantial proportion of serum urate variance, mediate the genetic effect on urate concentration, and co-regulate with cardiometabolic traits. However, whether urate concentration is associated with DNA methylation in a sex-dependent manner is unknown. Additionally, it is worth investigating if urate changes after perturbations, such as vaccination, are associated with DNA methylation in a sex-specific manner. Methods: We investigated the association between DNA methylation and serum urate concentrations in a Dutch cohort of 325 healthy individuals. Urate concentration and DNA methylation were measured before and after Bacillus Calmette-Guérin (BCG) vaccination, used as a perturbation associated with increased gout flares. The association analysis included united, interaction, and sex-stratified analysis. Validation of the identified CpG sites was conducted using three independent cohorts. Results: 215 CpG sites were associated with serum urate in males, while 5 CpG sites were associated with serum urate in females, indicating sex-specific associations. Circulating urate concentrations significantly increased after BCG vaccination, and baseline DNA methylation was associated with differences in urate concentration before and after vaccination in a sex-specific manner. The CpG sites associated with urate concentration in males were enriched in neuro-protection pathways, whereas in females, the urate change-associated CpG sites were related to lipid and glucose metabolism. Conclusion: Our study enhances the understanding of how epigenetic factors contribute to regulating serum urate levels in a sex-specific manner. These insights have significant implications for the diagnosis, prevention, and treatment of various urate-related diseases and highlight the importance of personalized and sex-specific approaches in medicine.

6.
Am J Transplant ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39147201

RESUMEN

The innate immune system plays an essential role in regulating the immune responses to kidney transplantation, but the mechanisms through which innate immune cells influence long-term graft survival are unclear. The current study highlights the vital role of trained immunity in kidney allograft survival. Trained immunity describes the epigenetic and metabolic changes that innate immune cells undergo following an initial stimulus, allowing them have a stronger inflammatory response to subsequent stimuli. We stimulated healthy peripheral blood mononuclear cells with pretransplant and posttransplant serum of kidney transplant patients and immunosuppressive drugs in an in vitro trained immunity assay and measured tumor necrosis factor and interleukin 6 cytokine levels in the supernatant as a readout for trained immunity. We show that the serum of kidney transplant recipients collected 1 week after transplantation can suppress trained immunity. Importantly, we found that kidney transplant recipients whose serum most strongly suppressed trained immunity rarely experienced graft loss. This suppressive effect of posttransplant serum is likely mediated by previously unreported effects of immunosuppressive drugs. Our findings provide mechanistic insights into the role of innate immunity in kidney allograft survival, uncovering trained immunity as a potential therapeutic target for improving graft survival.

7.
medRxiv ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39148854

RESUMEN

Immune related adverse events (irAEs) after immune checkpoint blockade (ICB) therapy occur in a significant proportion of cancer patients. To date, the circulating mediators of ICB-irAEs remain poorly understood. Using non-targeted mass spectrometry, here we identify the circulating bio-active lipid linoleoyl-lysophosphatidylcholine (LPC 18:2) as a modulator of ICB-irAEs. In three independent human studies of ICB treatment for solid tumor, loss of circulating LPC 18:2 preceded the development of severe irAEs across multiple organ systems. In both healthy humans and severe ICB-irAE patients, low LPC 18:2 was found to correlate with high blood neutrophilia. Reduced LPC 18:2 biosynthesis was confirmed in preclinical ICB-irAE models, and LPC 18:2 supplementation in vivo suppressed neutrophilia and tissue inflammation without impacting ICB anti-tumor response. Results indicate that circulating LPC 18:2 suppresses human ICB-irAEs, and LPC 18:2 supplementation may improve ICB outcomes by preventing severe inflammation while maintaining anti-tumor immunity.

8.
Immunity ; 57(9): 2095-2107.e8, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39153479

RESUMEN

Although the Bacille-Calmette-Guérin (BCG) vaccine is used to prevent tuberculosis, it also offers protection against a diverse range of non-mycobacterial infections. However, the underlying protective mechanisms in humans are not yet fully understood. Here, we surveyed at single-cell resolution the gene expression and chromatin landscape of human bone marrow, aspirated before and 90 days after BCG vaccination or placebo. We showed that BCG alters both the gene expression and epigenetic profiles of human hematopoietic stem and progenitor cells (HSPCs). Changes in gene expression occurred primarily within uncommitted stem cells. By contrast, changes in chromatin accessibility were most prevalent within differentiated progenitor cells at sites influenced by Kruppel-like factor (KLF) and early growth response (EGR) transcription factors and were highly correlated (r > 0.8) with the interleukin (IL)-1ß secretion capacity of paired peripheral blood mononuclear cells (PBMCs). Our findings shed light on BCG vaccination's profound and lasting effects on HSPCs and its influence on innate immune responses and trained immunity.


Asunto(s)
Vacuna BCG , Epigénesis Genética , Inmunidad Innata , Vacunación , Humanos , Vacuna BCG/inmunología , Epigénesis Genética/inmunología , Células Madre Hematopoyéticas/inmunología , Células Madre Hematopoyéticas/metabolismo , Interleucina-1beta/metabolismo , Médula Ósea/inmunología , Tuberculosis/inmunología , Tuberculosis/prevención & control , Adulto , Leucocitos Mononucleares/inmunología , Cromatina/metabolismo , Femenino , Masculino , Diferenciación Celular/inmunología , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/inmunología
9.
Nat Nanotechnol ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085390

RESUMEN

Regulating innate immunity is an emerging approach to improve cancer immunotherapy. Such regulation requires engaging myeloid cells by delivering immunomodulatory compounds to hematopoietic organs, including the spleen. Here we present a polymersome-based nanocarrier with splenic avidity and propensity for red pulp myeloid cell uptake. We characterized the in vivo behaviour of four chemically identical yet topologically different polymersomes by in vivo positron emission tomography imaging and innovative flow and mass cytometry techniques. Upon intravenous administration, relatively large and spherical polymersomes accumulated rapidly in the spleen and efficiently targeted myeloid cells in the splenic red pulp. When loaded with ß-glucan, intravenously administered polymersomes significantly reduced tumour growth in a mouse melanoma model. We initiated our nanotherapeutic's clinical translation with a biodistribution study in non-human primates, which revealed that the platform's splenic avidity is preserved across species.

10.
Vaccines (Basel) ; 12(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39066374

RESUMEN

The mRNA vaccine against COVID-19 protects against severe disease by the induction of robust humoral and cellular responses. Recent studies have shown the capacity of some vaccines to induce enduring non-specific innate immune responses by the induction of trained immunity, augmenting protection against unrelated pathogens. This study aimed to assess whether the mRNA vaccine BNT162b2 can induce lasting non-specific immune responses in myeloid cells following a three-dose vaccination scheme. In a sample size consisting of 20 healthy individuals from Romania, we assessed inflammatory proteins using the Olink® Target 96 Inflammation panel, as well as ex vivo cytokine responses following stimulations with unrelated PRR ligands. We assessed the vaccine-induced non-specific systemic inflammation and functional adaptations of myeloid cells. Our results revealed the induction of a stimulus- and cytokine-dependent innate immune memory phenotype that became apparent after the booster dose and was maintained eight months later in the absence of systemic inflammation.

11.
Semin Immunopathol ; 46(3-4): 7, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39060761

RESUMEN

The innate immune system exhibits features of memory, termed trained immunity, which promote faster and more robust responsiveness to heterologous challenges. Innate immune memory is sustained through epigenetic modifications, affecting gene accessibility, and promoting a tailored gene transcription for an enhanced immune response. Alterations in the epigenetic landscape are intertwined with metabolic rewiring. Here, we review the metabolic pathways that underscore the induction and maintenance of trained immunity, including glycolysis, oxidative phosphorylation, the tricarboxylic acid cycle, and amino acid and lipid metabolism. The intricate interplay of these pathways is pivotal for establishing innate immune memory in distinct cellular compartments. We explore in particular the case of resident lung alveolar macrophages. We propose that leveraging the memory of the innate immune system may present therapeutic potential. Specifically, targeting the metabolic programs of innate immune cells is an emerging strategy for clinical interventions, either to boost immune responses in immunosuppressed conditions or to mitigate maladaptive activation in hyperinflammatory diseases.


Asunto(s)
Epigénesis Genética , Inmunidad Innata , Memoria Inmunológica , Humanos , Animales , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/inmunología , Metabolismo Energético , Redes y Vías Metabólicas , Metabolismo de los Lípidos , Inmunidad Entrenada
12.
Immunol Lett ; 268: 106885, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38901739

RESUMEN

Leishmaniasis is a collective term for several tropical, neglected diseases caused by protozoans of the species Leishmania, 20 of which causing disease in humans ranging from localised self-healing lesions to chronic manifestations which affect the skin or inner organs. Although millions of infections are accounted for annually, treatment options are scarce and limited to medication associated with heavy side-effects and increasing antibiotic resistance. Case studies point towards immunotherapy as effective alternative treatment relying on immunomodulatory properties of e.g., the Bacillus Calmette-Guérin vaccine. Leishmania parasites are also known to modulate the immune system, yet the underlying macromolecules and surface molecules remain widely under characterised. With this short review, we aim to provide a complete summary of the existing literature describing one of the most expressed surface molecule on Leishmania spp, lipophosphoglycan (LPG), which shows great variability between different lifecycle stages and different Leishmania spp. Complete characterisation of LPG may aid to improve treatment and aid the development of vaccination strategies, and open new avenues to exploit the immunomodulatory properties of LPG in unrelated conditions.


Asunto(s)
Glicoesfingolípidos , Inmunomodulación , Leishmania , Leishmaniasis , Leishmania/inmunología , Humanos , Glicoesfingolípidos/inmunología , Glicoesfingolípidos/metabolismo , Animales , Leishmaniasis/inmunología , Leishmaniasis/parasitología
13.
Nutrients ; 16(12)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38931177

RESUMEN

CONTEXT/OBJECTIVE: In order to better understand which metabolic differences are related to insulin resistance in metabolic syndrome (MetSyn), we used hyperinsulinemic-euglycemic (HE) clamps in individuals with MetSyn and related peripheral insulin resistance to circulating biomarkers. DESIGN/METHODS: In this cross-sectional study, HE-clamps were performed in treatment-naive men (n = 97) with MetSyn. Subjects were defined as insulin-resistant based on the rate of disappearance (Rd). Machine learning models and conventional statistics were used to identify biomarkers of insulin resistance. Findings were replicated in a cohort with n = 282 obese men and women with (n = 156) and without (n = 126) MetSyn. In addition to this, the relation between biomarkers and adipose tissue was assessed by nuclear magnetic resonance imaging. RESULTS: Peripheral insulin resistance is marked by changes in proteins related to inflammatory processes such as IL-1 and TNF-receptor and superfamily members. These proteins can distinguish between insulin-resistant and insulin-sensitive individuals (AUC = 0.72 ± 0.10) with MetSyn. These proteins were also associated with IFG, liver fat (rho 0.36, p = 1.79 × 10-9) and visceral adipose tissue (rho = 0.35, p = 6.80 × 10-9). Interestingly, these proteins had the strongest association in the MetSyn subgroup compared to individuals without MetSyn. CONCLUSIONS: MetSyn associated with insulin resistance is characterized by protein changes related to body fat content, insulin signaling and pro-inflammatory processes. These findings provide novel targets for intervention studies and should be the focus of future in vitro and in vivo studies.


Asunto(s)
Biomarcadores , Resistencia a la Insulina , Síndrome Metabólico , Proteoma , Humanos , Síndrome Metabólico/metabolismo , Masculino , Femenino , Estudios Transversales , Persona de Mediana Edad , Adulto , Biomarcadores/sangre , Técnica de Clampeo de la Glucosa , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Insulina/sangre , Insulina/metabolismo , Grasa Intraabdominal/metabolismo
14.
iScience ; 27(6): 109947, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38840844

RESUMEN

The routine need for myonuclear turnover in skeletal muscle, together with more sporadic demands for hypertrophy and repair, are performed by resident muscle stem cells called satellite cells. Muscular dystrophies are characterized by muscle wasting, stimulating chronic repair/regeneration by satellite cells. Here, we derived and validated transcriptomic signatures for satellite cells, myoblasts/myocytes, and myonuclei using publicly available murine single cell RNA-Sequencing data. Our signatures distinguished disease from control in transcriptomic data from several muscular dystrophies including facioscapulohumeral muscular dystrophy (FSHD), Duchenne muscular dystrophy, and myotonic dystrophy type I. For FSHD, the expression of our gene signatures correlated with direct counts of satellite cells on muscle sections, as well as with increasing clinical and pathological severity. Thus, our gene signatures enable the investigation of myogenesis in bulk transcriptomic data from muscle biopsies. They also facilitate study of muscle regeneration in transcriptomic data from human muscle across health and disease.

15.
Open Forum Infect Dis ; 11(6): ofae266, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38868310

RESUMEN

Background: Steatotic liver disease is suggested to have a higher prevalence and severity in people with HIV (PHIV), including in those with a normal body mass index (BMI). In this study, we used data from the 2000HIV cohort to (1) assess the prevalence of liver steatosis and fibrosis in lean versus overweight/obese PHIV and (2) assess associations in these subgroups between steatosis and fibrosis with traditional risk factors and HIV-specific characteristics. Methods: The 2000HIV study cohort comprises 1895 virally suppressed PHIV that were included between 2019 and 2021 in 4 HIV treatment centers in the Netherlands. The majority (58.5%) underwent vibration-controlled transient elastography for the assessment of liver steatosis and fibrosis. The prevalence of steatosis (controlled attenuation parameter ≥263 dB/m) and fibrosis (liver stiffness measurement ≥7.0 kPa) was estimated. Multiple factors including HIV characteristics and antiretroviral drugs were tested in a logistic regression model for association with steatosis and fibrosis. Analyses were performed separately for lean (Asian descent: BMI < 23 kg/m2, other descent: BMI < 25 kg/m2) and overweight/obese (other BMI) participants. Results: Of 1050 PHIV including 505 lean and 545 overweight/obese PHIV, liver steatosis was observed in 37.7% of the overall study population, 19.7% of lean, and 54% of overweight/obese PHIV, whereas fibrosis was observed in 9.0% of the overall study population, 5.9% of lean, and 12.0% of overweight/obese PHIV.All associations with fibrosis and most associations with steatosis concerned metabolic factors such as type 2 diabetes mellitus (overall population: adjusted odds ratio [aOR] for steatosis: 2.3 [1.21-4.4], P = .011; aOR for fibrosis: 3.7 [1.82-7.53], P < .001). Furthermore, in lean PLHIV, liver steatosis was associated with CD4 and CD8 counts at enrollment, dual therapy, and history of treatment with raltegravir (aOR: 3.6 [1.53-8.47], P = .003), stavudine (aOR: 3.73 [1.69-8.2], P = .001), and indinavir (aOR: 3.86 [1.59-9.37], P = .003). These associations were not observed in overweight/obese PHIV. Conclusions: Liver steatosis was highly prevalent, affecting approximately one-fifth of lean PHIV and half of overweight/obese PHIV. Fibrosis was observed in a minority. Both steatosis and fibrosis were associated with traditional metabolic risk factors. In addition, (prior) exposure to specific antiretroviral drugs was associated liver steatosis in lean, but not in overweight/obese PHIV. Implementing increased screening protocols could enhance the identification of steatotic liver disease in lean PHIV.

16.
Front Immunol ; 15: 1350065, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779686

RESUMEN

Introduction: Immunological non-responders (INR) are people living with HIV (PLHIV) who fail to fully restore CD4+ T-cell counts despite complete viral suppression with antiretroviral therapy (ART). INR are at higher risk for non-HIV related morbidity and mortality. Previous research suggest persistent qualitative defects. Methods: The 2000HIV study (clinical trials NTC03994835) enrolled 1895 PLHIV, divided in a discovery and validation cohort. PLHIV with CD4 T-cell count <350 cells/mm3 after ≥2 years of suppressive ART were defined as INR and were compared to immunological responders (IR) with CD4 T-cell count >500 cells/mm3. Logistic and rank based regression were used to analyze clinical data, extensive innate and adaptive immunophenotyping, and ex vivo monocyte and lymphocyte cytokine production after stimulation with various stimuli. Results: The discovery cohort consisted of 62 INR and 1224 IR, the validation cohort of 26 INR and 243 IR. INR were older, had more advanced HIV disease before starting ART and had more frequently a history of non-AIDS related malignancy. INR had lower absolute CD4+ T-cell numbers in all subsets. Activated (HLA-DR+, CD38+) and exhausted (PD1+) subpopulations were proportionally increased in CD4 T-cells. Monocyte and granulocyte immunophenotypes were comparable. INR lymphocytes produced less IL-22, IFN-γ, IL-10 and IL-17 to stimuli. In contrast, monocyte cytokine production did not differ. The proportions of CD4+CD38+HLA-DR+ and CD4+PD1+ subpopulations showed an inversed correlation to lymphocyte cytokine production. Conclusions: INR compared to IR have hyperactivated and exhausted CD4+ T-cells in combination with lymphocyte functional impairment, while innate immune responses were comparable. Our data provide a rationale to consider the use of anti-PD1 therapy in INR.


Asunto(s)
Citocinas , Infecciones por VIH , Inmunosenescencia , Humanos , Infecciones por VIH/inmunología , Infecciones por VIH/tratamiento farmacológico , Masculino , Femenino , Citocinas/metabolismo , Persona de Mediana Edad , Adulto , Recuento de Linfocito CD4 , Linfocitos T CD4-Positivos/inmunología , Inmunofenotipificación , Fármacos Anti-VIH/uso terapéutico , VIH-1/inmunología , Carga Viral
17.
Nat Commun ; 15(1): 3795, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714679

RESUMEN

The incidence of Lyme borreliosis has risen, accompanied by persistent symptoms. The innate immune system and related cytokines are crucial in the host response and symptom development. We characterized cytokine production capacity before and after antibiotic treatment in 1,060 Lyme borreliosis patients. We observed a negative correlation between antibody production and IL-10 responses, as well as increased IL-1Ra responses in patients with disseminated disease. Genome-wide mapping the cytokine production allowed us to identify 34 cytokine quantitative trait loci (cQTLs), with 31 novel ones. We pinpointed the causal variant at the TLR1-6-10 locus and validated the regulation of IL-1Ra responses at transcritpome level using an independent cohort. We found that cQTLs contribute to Lyme borreliosis susceptibility and are relevant to other immune-mediated diseases. Our findings improve the understanding of cytokine responses in Lyme borreliosis and provide a genetic map of immune function as an expanded resource.


Asunto(s)
Citocinas , Enfermedad de Lyme , Sitios de Carácter Cuantitativo , Enfermedad de Lyme/inmunología , Enfermedad de Lyme/genética , Enfermedad de Lyme/microbiología , Humanos , Citocinas/genética , Citocinas/metabolismo , Masculino , Femenino , Interleucina-10/genética , Adulto , Estudio de Asociación del Genoma Completo , Persona de Mediana Edad , Proteína Antagonista del Receptor de Interleucina 1/genética , Borrelia burgdorferi/inmunología , Borrelia burgdorferi/genética , Antibacterianos , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad , Anciano
18.
Osteoarthritis Cartilage ; 32(10): 1261-1272, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38806070

RESUMEN

OBJECTIVE: We aimed to characterize calcium-containing crystals present in synovial fluid from patients with knee osteoarthritis (OA) using Raman spectroscopy, and specifically investigate the biological effects of calcite crystals. DESIGN: Thirty-two synovial fluid samples were collected pre-operatively from knee OA patients undergoing total joint arthroplasty. An integrated Raman polarized light microscope was used for identification of crystals in synovial fluid. Human peripheral blood mononuclear cells (PBMC's), human OA articular chondrocytes (HACs) and fibroblast-like synoviocytes (FLSs) were exposed to calcite crystals. Expression of relevant cytokines and inflammatory genes were measured using enzyme-linked immuno sorbent assay (ELISA) and real-time polymerase chain reaction (PCR). RESULTS: Various calcium-containing crystals were identified, including calcium pyrophosphate (37.5 %) and basic calcium phosphate (21.8 %), but they were never found simultaneously in the same OA synovial fluid sample. For the first time, we discovered the presence of calcite crystals in 93.8 % of the samples, while dolomite was detected in 25 % of the cases. Characterization of the cellular response to calcite crystal exposure revealed increased production of innate immune-derived cytokines by PBMC's, when co-stimulated with lipopolysaccharide (LPS). Additionally, calcite crystal stimulation of HACs and FLSs resulted in enhanced secretion of pro-inflammatory molecules and alterations in the expression of extracellular matrix remodeling enzymes. CONCLUSIONS: This study highlights the unique role of Raman spectroscopy in OA crystal research and identified calcite as a novel pro-inflammatory crystal type in OA synovial fluid. Understanding the role of specific crystal species in the OA joint may open new avenues for pharmacological interventions and personalized approaches to treating OA.


Asunto(s)
Carbonato de Calcio , Osteoartritis de la Rodilla , Espectrometría Raman , Líquido Sinovial , Humanos , Líquido Sinovial/metabolismo , Osteoartritis de la Rodilla/metabolismo , Anciano , Masculino , Femenino , Pirofosfato de Calcio/metabolismo , Citocinas/metabolismo , Condrocitos/metabolismo , Condrocitos/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Fosfatos de Calcio/farmacología , Persona de Mediana Edad , Sinoviocitos/metabolismo , Sinoviocitos/efectos de los fármacos , Cristalización , Anciano de 80 o más Años
19.
J Infect Dis ; 230(3): 768-777, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-38446996

RESUMEN

The interaction between the Candida albicans cell wall and pattern recognition receptors is crucial for the initiation of host immune responses, which, ultimately, contribute to the clearance of this pathogenic fungus. In the present study, we investigate the ability of C. albicans mannans to modulate immune response and induce innate immune memory (also termed trained immunity). Using mutants of C. albicans that are defective in or lack mannosyl residues, we show that alterations in the mannosylation of the C. albicans cell wall affect the innate cytokine response and strongly reduce the secretion of T-cell-derived cytokines. Subsequently, we demonstrate that the branching of N-linked mannan, but not O-linked mannan, is essential to potentiate the induction of trained immunity, a process mediated by dectin 2. In conclusion, N-linked mannan is needed, in addition to ß-glucans, for an effective induction of trained immunity by C. albicans.

20.
iScience ; 27(4): 109356, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38510149

RESUMEN

Familial Mediterranean fever (FMF) is a periodic fever syndrome caused by variation in MEFV. FMF is known for IL-1ß dysregulation, but the innate immune landscape of this disease has not been comprehensively described. Therefore, we studied circulating inflammatory proteins, and the function of monocytes and (albeit less extensively) neutrophils in treated FMF patients in remission. We found that monocyte IL-1ß and IL-6 production was enhanced upon stimulation, in concordance with alterations in the plasma inflammatory proteome. We did not observe changes in neutrophil functional assays. Subtle differences in chromatin accessibility and transcriptomics in our small patient cohort further argued for monocyte dysregulation. Together, these observations suggest that the MEFV-mutation-mediated primary immune dysregulation in monocytes leads to chronic inflammation that is subsequently associated with counterregulatory epigenetic/transcriptional changes reminiscent of tolerance. These data increase our understanding of the innate immune changes in FMF, aiding future management of chronic inflammation in these patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA