Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ChemistryOpen ; : e202400014, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38506589

RESUMEN

Two libraries of quinoline-based hybrids 1-(7-chloroquinolin-4-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine and 7-chloro-N-phenylquinolin-4-amine were synthesized and evaluated for their α-glucosidase inhibitory and antioxidant properties. Compounds with 4-methylpiperidine and para-trifluoromethoxy groups, respectively, showed the most promising α-glucosidase inhibition activity with IC50 =46.70 and 40.84 µM, compared to the reference inhibitor, acarbose (IC50 =51.73 µM). Structure-activity relationship analysis suggested that the cyclic secondary amine pendants and para-phenyl substituents account for the variable enzyme inhibition. Antioxidant profiling further revealed that compounds with an N-methylpiperazine and N-ethylpiperazine ring, respectively, have good DPPH scavenging abilities with IC50 =0.18, 0.58 and 0.93 mM, as compared to ascorbic acid (IC50 =0.05 mM), while the best DPPH scavenger is NO2 -substituted compound (IC50 =0.08 mM). Also, compound with N-(2-hydroxyethyl)piperazine moiety emerged as the best NO radical scavenger with IC50 =0.28 mM. Molecular docking studies showed that the present compounds are orthosteric inhibitors with their quinoline, pyrimidine, and 4-amino units as crucial pharmacophores furnishing α-glucosidase binding at the catalytic site. Taken together, these compounds exhibit dual potentials; i. e., potent α-glucosidase inhibitors and excellent free radical scavengers. Hence, they may serve as structural templates in the search for agents to manage Type 2 diabetes mellitus. Finally, in preliminary assays investigating the anti-tubercular potential of these compounds, two pyrazolopyrimidine series compounds and a 7-chloro-N-phenylquinolin-4-amine hybrid showed sub-10 µM whole-cell activities against Mycobacterium tuberculosis.

2.
Arch Pharm (Weinheim) ; 357(2): e2300560, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38032154

RESUMEN

Tuberculosis (TB) disease, caused by Mycobacterium tuberculosis (Mtb) is the leading cause of death among people with human immunodeficiency virus (HIV) infection. No dual-target drug is currently being used to simultaneously treat both infections. This work aimed to obtain new multitarget HIV-TB agents, with the goal of optimizing treatments and preventing this coinfection. These compounds incorporate the structural features of azaaurones as anti-Mtb and zidovudine (AZT) as the antiretroviral moiety. The azaaurone scaffold displayed submicromolar activities against Mtb, and AZT is a potent antiretroviral drug. Six derivatives were synthetically generated, and five were evaluated against both infective agents. Evaluations of anti-HIV activity were carried out in HIV-1-infected MT-4 cells and on endogenous HIV-1 reverse transcriptase (RT) activity. The H37Rv strain was used for anti-Mtb assessments. Most compounds displayed potent antitubercular and moderate anti-HIV activity. (E)-12 exhibited a promising multitarget profile with an MIC90 of 2.82 µM and an IC50 of 1.98 µM in HIV-1-infected T lymphocyte cells, with an 84% inhibition of RT activity. Therefore, (E)-12 could be the first promising compound from a family of multitarget agents used to treat HIV-TB coinfection. In addition, the compound could offer a prototype for the development of new strategies in scientific research to treat this global health issue.


Asunto(s)
Benzofuranos , Coinfección , Infecciones por VIH , VIH-1 , Mycobacterium tuberculosis , Tuberculosis , Humanos , Coinfección/tratamiento farmacológico , Relación Estructura-Actividad , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Antituberculosos/farmacología , Antituberculosos/química , Infecciones por VIH/tratamiento farmacológico , Antirretrovirales/farmacología
3.
ChemMedChem ; 18(24): e202300410, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-37845182

RESUMEN

While N-acetyl azaaurones have already been disclosed for their potential against tuberculosis (TB), their low metabolic stability remains an unaddressed liability. We now report a study designed to improve the metabolic stability and solubility of the azaaurone scaffold and to identify the structural requirements for antimycobacterial activity. Replacing the N-acetyl moiety for a N-carbamoyl group led to analogues with sub- and nanomolar potencies against M. tuberculosis H37Rv, as well as equipotent against drug-susceptible and drug-resistant M. tuberculosis isolates. The new N-carbamoyl azaaurones exhibited improved microsomal stability, compared to their N-acetylated counterparts, with several compounds displaying moderate to high kinetic solubility. The frequency of spontaneous resistance to azaaurones was observed to be in the range of 10-8 , a value that is comparable to current TB drugs in the market. Overall, these results reveal that azaaurones are amenable to structural modifications to improve metabolic and solubility liabilities, and highlight their potential as antimycobacterial agents.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Antituberculosos/farmacología , Antituberculosos/química , Solubilidad , Pruebas de Sensibilidad Microbiana
4.
Eur J Med Chem ; 258: 115539, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37321107

RESUMEN

Mycobacterium tuberculosis (Mtb) has an impermeable cell wall which gives it an inherent ability to resist many antibiotics. DprE1, an essential enzyme in Mtb cell wall synthesis, has been validated as a target for several TB drug candidates. The most potent and developmentally advanced DprE1 inhibitor, PBTZ169, is still undergoing clinical development. With high attrition rate, there is need to populate the development pipeline. Using a scaffold hopping strategy, we imprinted the benzenoid ring of PBTZ169 onto a quinolone nucleus. Twenty-two compounds were synthesised and screened for activity against Mtb, with six compounds exhibiting sub micromolar activity of MIC90 <0.244 µM. Compound 25 further demonstrated sub-micromolar activity when evaluated against wild-type and fluoroquinolone-resistant Mtb strains. This compound maintained its sub-micromolar activity against a DprE1 P116S mutant strain but showed a significant reduction in activity when tested against the DprE1 C387S mutant.


Asunto(s)
Mycobacterium tuberculosis , Quinolonas , Quinolonas/farmacología , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Piperazinas/farmacología , Relación Estructura-Actividad , Pruebas de Sensibilidad Microbiana
5.
Tuberculosis (Edinb) ; 141: 102350, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37244249

RESUMEN

A series of molecules containing bulky lipophilic scaffolds was screened for activity against Mycobacterium tuberculosis and a number of compounds with antimycobacterial activity were identified. The most active compound, (2E)-N-(adamantan-1-yl)-3-phenylprop-2-enamide (C1), has a low micromolar minimum inhibitory concentration, low cytotoxicity (therapeutic index = 32.26), low mutation frequency and is active against intracellular Mycobacterium tuberculosis. Whole genome sequencing of mutants resistant to C1 showed a mutation in mmpL3 which may point to the involvement of MmpL3 in the antimycobacterial activity of the compound. In silico mutagenesis and molecular modelling studies were performed to better understand the binding of C1 within MmpL3 and the role that the specific mutation may play in the interaction at protein level. These analyses revealed that the mutation increases the energy required for binding of C1 within the protein translocation channel of MmpL3. The mutation also decreases the solvation energy of the protein, suggesting that the mutant protein might be more solvent-accessible, thereby restricting its interaction with other molecules. The results reported here describe a new molecule that may interact with the MmpL3 protein, providing insights into the effect of mutations on protein-ligand interactions and enhancing our understanding of this essential protein as a priority drug target.


Asunto(s)
Mycobacterium tuberculosis , Antituberculosos/farmacología , Antituberculosos/metabolismo , Proteínas de Transporte de Membrana/genética , Amidas/metabolismo , Amidas/farmacología , Pruebas de Sensibilidad Microbiana , Proteínas Bacterianas/metabolismo
6.
ACS Omega ; 8(19): 17086-17102, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37214682

RESUMEN

Herein, we describe 39 novel quinolone compounds bearing a hydrophilic amine chain and varied substituted benzyloxy units. These compounds demonstrate broad-spectrum activities against acid-fast bacterium, Gram-positive and -negative bacteria, fungi, and leishmania parasite. Compound 30 maintained antitubercular activity against moxifloxacin-, isoniazid-, and rifampicin-resistant Mycobacterium tuberculosis, while 37 exhibited low micromolar activities (<1 µg/mL) against World Health Organization (WHO) critical pathogens: Cryptococcus neoformans, Acinetobacter baumannii, and Pseudomonas aeruginosa. Compounds in this study are metabolically robust, demonstrating % remnant of >98% after 30 min in the presence of human, rat, and mouse liver microsomes. Several compounds thus reported here are promising leads for the treatment of diseases caused by infectious agents.

7.
ChemMedChem ; 18(6): e202200572, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36617507

RESUMEN

Compounds containing arylpyrrole-, 1,2,4-triazole- and hydrazone structural frameworks have been widely studied and demonstrated to exhibit a wide range of pharmacological properties. Herein, an exploratory series of new 1,2,4-triazole derivatives designed by amalgamation of arylpyrrole and 1,2,4-triazole structural units via a hydrazone linkage is reported. The synthesised compounds were tested in vitro for their potential activity against Mycobacterium tuberculosis (MTB) H37 Rv strain. The most promising compound 13 - the derivative without the benzene ring appended to the pyrrole unit displayed acceptable activity (MIC90 =3.99 µM) against MTB H37 Rv, while other compounds from the series exhibited modest to weak antimycobacterial activity with MIC90 values in the range between 7.0 and >125 µM. Furthermore, in silico results, predicated using the SwissADME web tool, show that the prepared compounds display desirable ADME profile with parameters within acceptable range.


Asunto(s)
Antituberculosos , Mycobacterium tuberculosis , Antituberculosos/farmacología , Antituberculosos/química , Triazoles/farmacología , Triazoles/química , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad
8.
Mol Divers ; 27(2): 753-765, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35598185

RESUMEN

Tuberculosis (TB) is one of the leading causes of death worldwide. Developing new anti-TB compounds using cost-effective processes is critical to reduce TB incidence and accomplish the End TB Strategy milestone. Herein, we describe the synthesis and structure-activity relationships of a library of thirty 7H-Pyrrolo[2,3-d]pyrimidine derivatives providing insights into the contributions of different aromatic, aryl and alkyl substitution at the C-4 position of the 7-deazapurine ring. The minimum inhibitory concentration (MIC) of the compounds against the green fluorescent protein (GFP) reporter strain of Mycobacterium tuberculosis was assayed using the standard broth microdilution method, and cell toxicity was determined using the MTT assay. Sixteen compounds displayed in vitro activity against the GFP reporter strain of Mycobacterium tuberculosis with MIC90 values of 0.488-62.5 µM. This study highlights the most potent derivative, N-(4-phenoxy phenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine with a MIC90 value of 0.488 µM and was non-cytotoxic to the Vero cell line. Moreover, all the potent compounds from this series have a ClogP value less than 4 and molecular weight < 400; thus, likely to maintain drug-likeness during lead optimisation.


Asunto(s)
Antituberculosos , Mycobacterium tuberculosis , Antituberculosos/farmacología , Relación Estructura-Actividad , Pirimidinas/farmacología , Línea Celular , Pruebas de Sensibilidad Microbiana
9.
Chem Biol Drug Des ; 101(3): 717-726, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36350112

RESUMEN

Curcumin is a natural product that has been reported to exhibit myriad pharmacological properties, one of which is antitubercular activity. It demonstrates antitubercular activity by directly inhibiting Mycobacterium tuberculosis (M.tb) and also enhances immune responses that ultimately lead to the elimination of M.tb by macrophages. This natural product is, however, unstable, and several analogues, noticeably monocarbonyl analogues, have been synthesized to overcome this challenge. Curcumin and its monocarbonyl analogues reported so far exhibit moderate antitubercular activity in the range of 7 to 16 µM. Herein, we report a straightforward synthesis of novel monocarbonyl curcumin analogues, their antitubercular activity, and the structure-activity relationship. The hit compound from this study, 3a, exhibits potent MIC90 values in the range of 0.2 to 0.9 µM in both ADC and CAS media.


Asunto(s)
Curcumina , Mycobacterium tuberculosis , Antituberculosos/farmacología , Relación Estructura-Actividad , Pruebas de Sensibilidad Microbiana
10.
Chem Biodivers ; 19(11): e202200729, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36102043

RESUMEN

Herein we report the synthesis of novel compounds inspired by the antimicrobial activities of nitroazole and thiazolidin-4-one based compounds reported in the literature. Target compounds were investigated in vitro for antitubercular, antibacterial, antifungal, and overt cell toxicity properties. All compounds exhibited potent antitubercular activity. Most compounds exhibited low micromolar activity against S. aureus and C. albicans with no overt cell toxicity against HEK-293 cells nor haemolysis against human red blood cells. Notably, compound 3b exhibited low to sub-micromolar activities against Mtb, MRSA, and C. albicans. 3b showed superior activity (0.25 µg/ml) against MRSA compared to vancomycin (1 µg/ml).


Asunto(s)
Antiinfecciosos , Staphylococcus aureus , Humanos , Pruebas de Sensibilidad Microbiana , Células HEK293 , Relación Estructura-Actividad , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Antituberculosos/farmacología , Candida albicans
11.
Arch Pharm (Weinheim) ; 355(10): e2200172, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35674486

RESUMEN

A recent study identified quinolone-based thiosemicarbazone with an MIC90 value of 2 µM against Mycobacterium tuberculosis (Mtb). Herein, we report further optimization of the previous hit, which led to the discovery of quinolone-tethered aminoguanidine molecules with generally good antitubercular activity. Compounds 7f and 8e emerged as the hits of the series with submicromolar antitubercular activity, exhibiting MIC90 values of 0.49/0.90 and 0.49/0.60 µM, respectively, in the 7H9 CAS GLU Tx medium. This shows a fivefold increase in antitubercular activity compared to the previous study. Target compounds were also screened against ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens. However, the series generally exhibited poor antibacterial activities, with only compounds 8d and 8e demonstrating >50% growth inhibition of Staphylococcus aureus and Pseudomonas aeruginosa at 32 µg/ml. The compounds displayed selective antitubercular activity as they showed no cytotoxicity effects against two noncancerous human cell lines. In silico studies predict 7f to have good solubility, no inhibitory effect on cytochrome P450 isoenzymes, and to be a non-pan-assay interfering compound.


Asunto(s)
Quinolonas , Infecciones Estafilocócicas , Tiosemicarbazonas , Antibacterianos/farmacología , Guanidinas , Humanos , Isoenzimas , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa , Quinolonas/farmacología , Staphylococcus aureus , Relación Estructura-Actividad , Tiosemicarbazonas/farmacología
12.
J Ethnopharmacol ; 295: 115389, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35589021

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Eight indigenous medicinal plants which are used traditionally for the treatment of tuberculosis (TB), malaria, and associated symptoms, were selected for this study. AIM OF STUDY: The aim of this study was to evaluate the antiplasmodial and antimycobacterial activities of the organic and aqueous crude extracts of different plant parts, by comparing the activities of subfractions (lead-like enhanced [LLE] extracts and methanol fractions) prepared from the bioactive crude extracts. MATERIALS & METHODS: Crude aqueous and organic extracts were prepared for 25 different plant parts obtained from eight plant species. In vitro antiplasmodial activity was evaluated using the parasite lactate dehydrogenase assay against chloroquine-sensitive Plasmodium falciparum NF54 and in vitro antimycobacterial activity determined against the Mycobacterium tuberculosis H37Rv-GFP strain in a standard broth microdilution assay. The bioactive crude extracts were subjected to solid phase extraction with Strata-X 33 µm reversed phase cartridges and eluted with 70:30 MeOH: H2O:1% trifluoroacetic acid to yield the LLE extract, followed by a methanol rinse, herein referred to as the MeOH fraction. Both fractions were evaluated for antiplasmodial and antimycobacterial activity. Proton nuclear magnetic resonance spectroscopy (1H-NMR) and ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) profiling of the crude and active fractions of the phytochemically unexplored Sarcocaulon marlothii Engl. were performed to aid the identification of a potential antiplasmodial lead compound. RESULTS: Ten of the aqueous and organic crude extracts displayed antimycobacterial activity, with minimum inhibitory concentration (MIC90) values ranging from 9.9 to 86.8 µg/mL, and four crude extracts showed antiplasmodial activity with inhibitory concentration (IC50) values between 5.2 and 17.8 µg/mL. Although the stems of S. marlothii are traditionally used to treat TB and related symptoms, the two crude extracts displayed weak antimycobacterial activity (MIC90 > 100 µg/mL) while the crude organic extract displayed moderate antiplasmodial activity with an IC50 value of 8.8 µg/mL. None of the LLE extracts prepared from the ten antimycobacterial-active crudes displayed any significant activity (MIC90 > 125 µg/mL). In contrast, fractionation of three antiplasmodial-active, crude organic extracts yielded MeOH fractions which displayed a 2-fold to 19-fold increase in activity. The 1H-NMR profiles of the active MeOH fraction (IC50 4.3 µg/mL) of S. marlothii (organic, stem) revealed the likely presence of an unidentified trisubstituted cinnamic acid derivative as one of the major compounds and UPLC-MS/MS data provided additional evidence that the compound may be a hydroxycinnamic acid derivative. Unfortunately, owing to the paucity of the material obtained, we were unable to purify and unequivocally determine the structure of this active compound. CONCLUSIONS: This is the first report on the phytochemical profiling of S. marlothii and, based on the antiplasmodial activity recorded, it merits an in-depth phytochemical analysis for the unequivocal characterization of a potential antiplasmodial lead compound. Results from this study lend support to the effectiveness of extract enrichment in combination with NMR fingerprinting for antiplasmodial lead identification.


Asunto(s)
Antimaláricos , Plantas Medicinales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antimaláricos/uso terapéutico , Cromatografía Liquida , Metanol , Extractos Vegetales/uso terapéutico , Plantas Medicinales/química , Espectrometría de Masas en Tándem
13.
Medicines (Basel) ; 9(2)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35200753

RESUMEN

Tuberculosis (TB) remains a public health crisis, requiring the urgent identification of new anti-mycobacterial drugs. We screened several organic and aqueous marine invertebrate extracts for their in vitro inhibitory activity against the causative organism, Mycobacterium tuberculosis. Here, we report the results obtained for 54 marine invertebrate extracts. The chemical components of two of the extracts were dereplicated, using 1H NMR and HR-LCMS with GNPS molecular networking, and these extracts were further subjected to an activity-guided isolation process to purify the bioactive components. Hyrtios reticulatus yielded heteronemin 1 and Jaspis splendens was found to produce the bengamide class of compounds, of which bengamides P 2 and Q 3 were isolated, while a new derivative, bengamide S 5, was putatively identified and its structure predicted, based on the similarity of its MS/MS fragmentation pattern to those of other bengamides. The isolated bioactive metabolites and semi-pure fractions exhibited M. tuberculosis growth inhibitory activity, in the range <0.24 to 62.50 µg/mL. This study establishes the bengamides as potent antitubercular compounds, with the first report of whole-cell antitubercular activity of bengamides P 2 and Q 3.

14.
Adv Pharmacol Pharm Sci ; 2021: 5583342, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34240057

RESUMEN

Mycobacterium tuberculosis has developed extensive resistance to numerous antimycobacterial agents used in the treatment of tuberculosis. Insufficient intracellular accumulation of active moieties allows for selective survival of mycobacteria with drug resistance mutations and accordingly promotes the development of microbial drug resistance. Discovery of compounds with new mechanisms of action and physicochemical properties that promote intracellular accumulation, or compounds that act synergistically with other antimycobacterial drugs, has the potential to reduce and prevent further drug resistance. To this end, antimycobacterial activity, mechanism of action, and synergism in combination therapy were investigated for a series of polycyclic amine derivatives. Compound selection was based on the presence of moieties with possible antimycobacterial activity, the inclusion of bulky lipophilic carriers to promote intracellular accumulation, and previously demonstrated bioactivity that potentially support inhibition of efflux pump activity. The most potent antimycobacterial demonstrated a minimum inhibitory concentration (MIC99) of 9.6 µM against Mycobacterium tuberculosis H37Rv. Genotoxicity and inhibition of the cytochrome bc 1 respiratory complex were excluded as mechanisms of action for all compounds. Inhibition of cell wall synthesis was identified as a likely mechanism of action for the two most active compounds (14 and 15). Compounds 5 and 6 demonstrated synergistic activity with the known Rv1258c efflux pump substrate, spectinomycin, pointing to possible efflux pump inhibition. For this series, the nature of the side chain, rather than the type of polycyclic carrier, seems to play a determining role in the antimycobacterial activity and cytotoxicity of the compounds. Contrariwise, the nature of the polycyclic carrier, particularly the azapentacycloundecane cage, appears to promote synergistic activity. Results point to the possibility of combining an azapentacycloundecane carrier with a side chain that promotes antimycobacterial activity to develop dual acting molecules for the treatment of Mycobacterium tuberculosis.

15.
Bioorg Chem ; 114: 105118, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34216896

RESUMEN

A principal factor that contributes towards the failure to eradicate leishmaniasis and tuberculosis infections is the reduced efficacy of existing chemotherapies, owing to a continuous increase in multidrug-resistant strains of the causative pathogens. This accentuates the dire need to develop new and effective drugs against both plights. A series of naphthoquinone-triazole hybrids was synthesized and evaluated in vitro against Leishmania (L.) and Mycobacterium tuberculosis (Mtb) strains. Their cytotoxicities were also evaluated, using the human embryonic kidney cell line (HEK-293). The hybrids were found to be non-toxic towards human cells and had demonstrated micromolar cellular antileishmanial and antimycobacterial potencies. Hybrid 13, i.e. 2-{[1-(4-methylbenzyl)-1H-1,2,3-triazol-4-yl]methoxy}naphthalene-1,4-dione was the most active of all. It was found with MIC90 0.5 µM potency against Mtb in a protein free medium, and with half-maxima inhibitory concentrations (IC50) of 0.81 µM and 1.48 µM against the infective promastigote parasites of L. donavani and L. major, respectively, with good selectivity towards these pathogens (SI 22 - 65). Comparatively, the clinical naphthoquinone, atovaquone, although less cytotoxic, was found to be two-fold less antimycobacterial potent, and six- to twelve-fold less active against leishmania. Hybrid 13 may therefore stand as a potential anti-infective hit for further development in the search for new antitubercular and antileishmanial drugs. Elucidation of its exact mechanism of action and molecular targets will constitute future endeavour.


Asunto(s)
Antiprotozoarios/farmacología , Antituberculosos/farmacología , Atovacuona/farmacología , Leishmania/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Naftoquinonas/farmacología , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Antituberculosos/síntesis química , Antituberculosos/química , Atovacuona/química , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Naftoquinonas/síntesis química , Naftoquinonas/química , Pruebas de Sensibilidad Parasitaria , Relación Estructura-Actividad
16.
Molecules ; 26(4)2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33672753

RESUMEN

The cell wall of Mycobacterium tuberculosis (Mtb) has a unique structural organisation, comprising a high lipid content mixed with polysaccharides. This makes cell wall a formidable barrier impermeable to hydrophilic agents. In addition, during host infection, Mtb resides in macrophages within avascular necrotic granulomas and cavities, which shield the bacterium from the action of most antibiotics. To overcome these protective barriers, a new class of anti-TB agents exhibiting lipophilic character have been recommended by various reports in literature. Herein, a series of lipophilic heterocyclic quinolone compounds was synthesised and evaluated in vitro against pMSp12::GFP strain of Mtb, two protozoan parasites (Plasmodium falciparum and Trypanosoma brucei brucei) and against ESKAPE pathogens. The resultant compounds exhibited varied anti-Mtb activity with MIC90 values in the range of 0.24-31 µM. Cross-screening against P. falciparum and T.b. brucei, identified several compounds with antiprotozoal activities in the range of 0.4-20 µM. Compounds were generally inactive against ESKAPE pathogens, with only compounds 8c, 8g and 13 exhibiting moderate to poor activity against S. aureus and A. baumannii.


Asunto(s)
Antibacterianos/farmacología , Antiprotozoarios/farmacología , Quinolonas/farmacología , Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/efectos de los fármacos , Quinolonas/síntesis química , Quinolonas/química , Staphylococcus aureus/efectos de los fármacos , Trypanosoma brucei brucei/efectos de los fármacos
17.
Eur J Med Chem ; 213: 113207, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33524688

RESUMEN

Nitro based DprE1 inhibitors exemplified by benzothiazinones have been reported to elicit potent anti-tubercular activity. Poor PK properties associated with benzothiazinones have inspired the discovery of alternative nitro based DprE1 inhibitors. Quinolone based antibiotics on the other hand have good PK properties. The potent anti-tubercular activity of nitro compounds and the good PK properties of the quinolones have elicited an interest in us to construct a new class of nitro containing compounds around the quinolone scaffold with the aim of identifying novel DprE1 inhibitors with potent anti-tubercular activity. Thus, we report herein the anti-tubercular activity of novel 6-nitroquinolone-3-carboxamide derivatives achieved using less than five cheap synthetic transformations. Among the 23 target compounds evaluated for anti-tubercular activity, 12 were active against Mtb─ exhibiting activity in the range of <0.244-31.865 µM. Compound 25 having a molecular weight of 399 Da and ClogP value of 2.7 is the most active (MIC90: <0.244 µM) in this series. The SAR analyses suggest that anti-tubercular activity was influenced by substituents at position N-1 (R2) and C-3 (R3) of the quinolone ring. The activity data suggest that the nature of R3 has a stronger influence on the SAR compared to R2; with a fluorobenzyl and chlorobenzyl moiety at R2 being the most favoured when R3 is an aliphatic amine. Docking study confirms that compound 25 binds to the same hydrophobic pocket as does TCA1, and other nitro based DprE1 inhibitors, with its nitro group in close proximity with Cys387 residue.


Asunto(s)
Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Nitrocompuestos/farmacología , Quinolonas/farmacología , Antituberculosos/síntesis química , Antituberculosos/química , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Molecular , Nitrocompuestos/síntesis química , Nitrocompuestos/química , Quinolonas/síntesis química , Quinolonas/química , Relación Estructura-Actividad
18.
Plants (Basel) ; 10(1)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33477744

RESUMEN

Medicinal plants of the Plectranthus genus (Lamiaceae) are well known for their ethnomedicinal applications. Plectranthus madagascariensis, which is native to South Africa, is traditionally used in the treatment of respiratory conditions, scabies, and cutaneous wounds. The phytochemical studies of P. madagascariensis led to the isolation of five known royleanone abietanes, namely, 6ß,7α-dihydroxyroyleanone (1), 7α-acetoxy-6ß-hydroxyroyleanone (2), horminone (3), coleon U quinone (4), and carnosolon (5). The relative configuration of compound 2 was established by X-ray analysis. Compounds 1-4 showed antimycobacterial activity (Minimum inhibitory concentration for 90% inhibition, MIC90 = 5.61-179.60 µM) against Mycobacterium tuberculosis H37Rv. Compound 4 and 5 showed comparable toxicity (Concentration for 50% inhibition, IC50 98.49 µM and 79.77 µM) to tamoxifen (IC50 22.00 µg/mL) against HaCaT cells. Compounds 1-5 showed antioxidant activity through single-electron transfer (SET) and/or hydrogen-atom transfer (HAT) with compound 5 being the most active antioxidant agent. Compounds 3 and 5 were isolated for the first time from P. madagascariensis. The observed results suggest P. madagascariensis as an important ethnomedicinal plant and as a promising source of diterpenoids with potential use in the treatment of tuberculosis and psoriasis.

19.
Front Cell Infect Microbiol ; 10: 582416, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33282750

RESUMEN

Compounds with novel modes of action are urgently needed to develop effective combination therapies for the treatment of tuberculosis. In this study, a series of compounds was evaluated for activity against replicating Mycobacterium tuberculosis and Vero cell line toxicity. Fourteen of the compounds with in vitro activities in the low micrometer range and a favorable selectivity index were classified using reporter strains of M. tuberculosis which showed that six interfered with cell wall metabolism and one disrupted DNA metabolism. Counter-screening against strains carrying mutations in promiscuous drug targets argued against DprE1 and MmpL3 as hits of any of the cell wall actives and eliminated the cytochrome bc1 complex as a target of any of the compounds. Instead, whole-genome sequencing of spontaneous resistant mutants and/or counter-screening against common isoniazid-resistant mutants of M. tuberculosis revealed that four of the six cell wall-active compounds, all pyridine carboxamide analogues, were metabolized by KatG to form InhA inhibitors. Resistance to two of these compounds was associated with mutations in katG that did not confer cross-resistance to isoniazid. Of the remaining seven compounds, low-level resistance to one was associated with an inactivating mutation in Rv0678, the regulator of the MmpS5-MmpL5 system, which has been implicated in non-specific efflux of multiple chemotypes. Another mapped to the mycothiol-dependent reductase, Rv2466c, suggesting a prodrug mechanism of action in that case. The inability to isolate spontaneous resistant mutants to the seven remaining compounds suggests that they act via mechanisms which have yet to be elucidated.


Asunto(s)
Mycobacterium tuberculosis , Profármacos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Proteínas Bacterianas/genética , Catalasa/genética , Farmacorresistencia Bacteriana , Isoniazida/farmacología , Pruebas de Sensibilidad Microbiana , Mutación , Mycobacterium tuberculosis/genética
20.
Eur J Med Chem ; 206: 112694, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32861176

RESUMEN

A series of neutral and cationic Ir(III) and Rh(III) aminoquinoline-benzimidazole hybrid complexes were synthesised and their inhibitory activities evaluated against Plasmodium falciparum and Mycobacterium tuberculosis. In general, the hybrid complexes display good activity against the chloroquine-sensitive NF54 strain of P. falciparum. The neutral Ir(III)- and Rh(III)-Cp∗ complexes were the most active (IC50 = 0.488 µM for IrIII), maintaining activity against the multidrug-resistant K1 strain. Low to no cytotoxicity against the Chinese hamster ovarian cell line was observed for the tested complexes. Selected active hybrid complexes demonstrated significant inhibition of ß-haematin formation in a cell-free NP-40 assay, suggesting an effect on the host haemoglobin degradation pathway as a potential contributing mechanism of action. When tested against M. tuberculosis H37Rv, most hybrid complexes displayed moderate to good activity. Again, the neutral complexes outperformed the cationic complexes, with the neutral Ir(III)-Cp∗ complexes proving most active (MIC90 = 0.488-1.490 µM).


Asunto(s)
Aminoquinolinas/química , Bencimidazoles/química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Iridio/química , Rodio/química , Animales , Antiinfecciosos/química , Antiinfecciosos/farmacología , Células CHO , Cricetulus , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...