Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 8: 14344, 2017 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-28181495

RESUMEN

Metastasis-competent circulating tumour cells (CTCs) experience oxidative stress in the bloodstream, but their survival mechanisms are not well defined. Here, comparing single-cell RNA-Seq profiles of CTCs from breast, prostate and lung cancers, we observe consistent induction of ß-globin (HBB), but not its partner α-globin (HBA). The tumour-specific origin of HBB is confirmed by sequence polymorphisms within human xenograft-derived CTCs in mouse models. Increased intracellular reactive oxygen species (ROS) in cultured breast CTCs triggers HBB induction, mediated through the transcriptional regulator KLF4. Depletion of HBB in CTC-derived cultures has minimal effects on primary tumour growth, but it greatly increases apoptosis following ROS exposure, and dramatically reduces CTC-derived lung metastases. These effects are reversed by the anti-oxidant N-Acetyl Cysteine. Conversely, overexpression of HBB is sufficient to suppress intracellular ROS within CTCs. Altogether, these observations suggest that ß-globin is selectively deregulated in cancer cells, mediating a cytoprotective effect during blood-borne metastasis.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias/sangre , Neoplasias/genética , Globinas beta/genética , Animales , Antioxidantes/metabolismo , Apoptosis/genética , Línea Celular Tumoral , Supervivencia Celular/genética , Citoprotección/genética , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/metabolismo , Masculino , Ratones , Neoplasias/patología , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico , Regulación hacia Arriba/genética , Globinas beta/metabolismo
2.
Cell Rep ; 17(10): 2632-2647, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27926867

RESUMEN

TGF-ß secreted by tumor stroma induces epithelial-to-mesenchymal transition (EMT) in cancer cells, a reversible phenotype linked to cancer progression and drug resistance. However, exposure to stromal signals may also lead to heritable changes in cancer cells, which are poorly understood. We show that epithelial cells failing to undergo proliferation arrest during TGF-ß-induced EMT sustain mitotic abnormalities due to failed cytokinesis, resulting in aneuploidy. This genomic instability is associated with the suppression of multiple nuclear envelope proteins implicated in mitotic regulation and is phenocopied by modulating the expression of LaminB1. While TGF-ß-induced mitotic defects in proliferating cells are reversible upon its withdrawal, the acquired genomic abnormalities persist, leading to increased tumorigenic phenotypes. In metastatic breast cancer patients, increased mesenchymal marker expression within single circulating tumor cells is correlated with genomic instability. These observations identify a mechanism whereby microenvironment-derived signals trigger heritable genetic changes within cancer cells, contributing to tumor evolution.


Asunto(s)
Neoplasias de la Mama/genética , Inestabilidad Genómica/genética , Lamina Tipo B/genética , Factor de Crecimiento Transformador beta1/genética , Neoplasias de la Mama/patología , Diferenciación Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Humanos
3.
Nature ; 537(7618): 102-106, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27556950

RESUMEN

Circulating tumour cells in women with advanced oestrogen-receptor (ER)-positive/human epidermal growth factor receptor 2 (HER2)-negative breast cancer acquire a HER2-positive subpopulation after multiple courses of therapy. In contrast to HER2-amplified primary breast cancer, which is highly sensitive to HER2-targeted therapy, the clinical significance of acquired HER2 heterogeneity during the evolution of metastatic breast cancer is unknown. Here we analyse circulating tumour cells from 19 women with ER+/HER2- primary tumours, 84% of whom had acquired circulating tumour cells expressing HER2. Cultured circulating tumour cells maintain discrete HER2+ and HER2- subpopulations: HER2+ circulating tumour cells are more proliferative but not addicted to HER2, consistent with activation of multiple signalling pathways; HER2- circulating tumour cells show activation of Notch and DNA damage pathways, exhibiting resistance to cytotoxic chemotherapy, but sensitivity to Notch inhibition. HER2+ and HER2- circulating tumour cells interconvert spontaneously, with cells of one phenotype producing daughters of the opposite within four cell doublings. Although HER2+ and HER2- circulating tumour cells have comparable tumour initiating potential, differential proliferation favours the HER2+ state, while oxidative stress or cytotoxic chemotherapy enhances transition to the HER2- phenotype. Simultaneous treatment with paclitaxel and Notch inhibitors achieves sustained suppression of tumorigenesis in orthotopic circulating tumour cell-derived tumour models. Together, these results point to distinct yet interconverting phenotypes within patient-derived circulating tumour cells, contributing to progression of breast cancer and acquisition of drug resistance.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Receptor ErbB-2/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos , Femenino , Humanos , Células Neoplásicas Circulantes/efectos de los fármacos , Fenotipo , Receptor ErbB-2/deficiencia , Receptor Notch1/antagonistas & inhibidores , Receptor Notch1/metabolismo , Transducción de Señal
4.
Mol Cell Biol ; 33(15): 3011-25, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23716599

RESUMEN

We previously identified a gene signature predicted to regulate the epithelial-mesenchymal transition (EMT) in both epithelial tissue stem cells and breast cancer cells. A phenotypic RNA interference (RNAi) screen identified the genes within this 140-gene signature that promoted the conversion of mesenchymal epithelial cell adhesion molecule-negative (EpCAM-) breast cancer cells to an epithelial EpCAM+/high phenotype. The screen identified 10 of the 140 genes whose individual knockdown was sufficient to promote EpCAM and E-cadherin expression. Among these 10 genes, RNAi silencing of the SWI/SNF chromatin-remodeling factor Smarcd3/Baf60c in EpCAM- breast cancer cells gave the most robust transition from the mesenchymal to epithelial phenotype. Conversely, expression of Smarcd3/Baf60c in immortalized human mammary epithelial cells induced an EMT. The mesenchymal-like phenotype promoted by Smarcd3/Baf60c expression resulted in gene expression changes in human mammary epithelial cells similar to that of claudin-low triple-negative breast cancer cells. These mammary epithelial cells expressing Smarcd3/Baf60c had upregulated Wnt5a expression. Inhibition of Wnt5a by either RNAi knockdown or blocking antibody reversed Smarcd3/Baf60c-induced EMT. Thus, Smarcd3/Baf60c epigenetically regulates EMT by activating WNT signaling pathways.


Asunto(s)
Epigénesis Genética , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción/metabolismo , Proteínas Wnt/metabolismo , Mama/metabolismo , Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proteínas Cromosómicas no Histona , Células Epiteliales/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas Proto-Oncogénicas/genética , Interferencia de ARN , Factores de Transcripción/genética , Regulación hacia Arriba , Proteínas Wnt/genética , Vía de Señalización Wnt , Proteína Wnt-5a
5.
Cell ; 149(2): 307-21, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22500798

RESUMEN

Kinase inhibitors have limited success in cancer treatment because tumors circumvent their action. Using a quantitative proteomics approach, we assessed kinome activity in response to MEK inhibition in triple-negative breast cancer (TNBC) cells and genetically engineered mice (GEMMs). MEK inhibition caused acute ERK activity loss, resulting in rapid c-Myc degradation that induced expression and activation of several receptor tyrosine kinases (RTKs). RNAi knockdown of ERK or c-Myc mimicked RTK induction by MEK inhibitors, and prevention of proteasomal c-Myc degradation blocked kinome reprogramming. MEK inhibitor-induced RTK stimulation overcame MEK2 inhibition, but not MEK1 inhibition, reactivating ERK and producing drug resistance. The C3Tag GEMM for TNBC similarly induced RTKs in response to MEK inhibition. The inhibitor-induced RTK profile suggested a kinase inhibitor combination therapy that produced GEMM tumor apoptosis and regression where single agents were ineffective. This approach defines mechanisms of drug resistance, allowing rational design of combination therapies for cancer.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Resistencia a Antineoplásicos , MAP Quinasa Quinasa 1/antagonistas & inhibidores , Proteínas Quinasas/genética , Proteoma/análisis , Animales , Antineoplásicos/uso terapéutico , Bencenosulfonatos/uso terapéutico , Bencimidazoles/uso terapéutico , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Niacinamida/análogos & derivados , Compuestos de Fenilurea , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Piridinas/uso terapéutico , Proteínas Tirosina Quinasas Receptoras/genética , Sorafenib
6.
Cell Cycle ; 10(17): 2865-73, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21862874

RESUMEN

Epithelial-mesenchymal transition (EMT) is an essential developmental program that becomes reactivated in adult tissues to promote the progression of cancer. EMT has been largely studied by examining the beginning epithelial state or the ending mesenchymal state without studying the intermediate stages. Recent studies using trophoblast stem (TS) cells paused in EMT have defined the molecular and epigenetic mechanisms responsible for modulating the intermediate "metastable" stages of EMT. Targeted inactivation of MAP3K4, knockdown of CBP, or overexpression of SNAI1 in TS cells induced similar metastable phenotypes. These TS cells exhibited epigenetic changes in the histone acetylation landscape that cause loss of epithelial maintenance while preserving self-renewal and multipotency. A similar phenotype was found in claudin-low breast cancer cells with properties of EMT and stemness. This intersection between EMT and stemness in TS cells and claudin-low metastatic breast cancer demonstrates the usefulness of developmental EMT systems to understand EMT in cancer.


Asunto(s)
Neoplasias de la Mama/patología , Transición Epitelial-Mesenquimal , Células Madre/citología , Trofoblastos/citología , Acetilación , Animales , Cadherinas/metabolismo , Diferenciación Celular , Línea Celular , Polaridad Celular , Implantación del Embrión , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Epigénesis Genética , Células Epiteliales/citología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Factor 4 de Crecimiento de Fibroblastos/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , MAP Quinasa Quinasa Quinasa 4/metabolismo , Ratones , Invasividad Neoplásica , Placenta/patología , Embarazo , Transducción de Señal , Factores de Transcripción de la Familia Snail , Células Madre/metabolismo , Células Madre/patología , Factores de Transcripción/metabolismo , Trofoblastos/metabolismo , Trofoblastos/patología
7.
Cell Stem Cell ; 8(5): 525-37, 2011 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-21549327

RESUMEN

Epithelial stem cells self-renew while maintaining multipotency, but the dependence of stem cell properties on maintenance of the epithelial phenotype is unclear. We previously showed that trophoblast stem (TS) cells lacking the protein kinase MAP3K4 maintain properties of both stemness and epithelial-mesenchymal transition (EMT). Here, we show that MAP3K4 controls the activity of the histone acetyltransferase CBP, and that acetylation of histones H2A and H2B by CBP is required to maintain the epithelial phenotype. Combined loss of MAP3K4/CBP activity represses expression of epithelial genes and causes TS cells to undergo EMT while maintaining their self-renewal and multipotency properties. The expression profile of MAP3K4-deficient TS cells defines an H2B acetylation-regulated gene signature that closely overlaps with that of human breast cancer cells. Taken together, our data define an epigenetic switch that maintains the epithelial phenotype in TS cells and reveals previously unrecognized genes potentially contributing to breast cancer.


Asunto(s)
Células Madre Embrionarias/metabolismo , Transición Epitelial-Mesenquimal , Histonas/metabolismo , Proteínas de la Membrana/metabolismo , Células Madre Multipotentes/metabolismo , Fosfoproteínas/metabolismo , Acetilación , Animales , Línea Celular , Supervivencia Celular/genética , Transformación Celular Neoplásica/genética , Células Madre Embrionarias/patología , Epigénesis Genética , Transición Epitelial-Mesenquimal/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Histonas/genética , MAP Quinasa Quinasa Quinasa 4/genética , MAP Quinasa Quinasa Quinasa 4/metabolismo , Ratones , Células Madre Multipotentes/patología , Mutación/genética , Trofoblastos/patología
8.
Cell ; 138(5): 990-1004, 2009 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-19737524

RESUMEN

During brain development, proper neuronal migration and morphogenesis is critical for the establishment of functional neural circuits. Here we report that srGAP2 negatively regulates neuronal migration and induces neurite outgrowth and branching through the ability of its F-BAR domain to induce filopodia-like membrane protrusions resembling those induced by I-BAR domains in vivo and in vitro. Previous work has suggested that in nonneuronal cells filopodia dynamics decrease the rate of cell migration and the persistence of leading edge protrusions. srGAP2 knockdown reduces leading process branching and increases the rate of neuronal migration in vivo. Overexpression of srGAP2 or its F-BAR domain has the opposite effects, increasing leading process branching and decreasing migration. These results suggest that F-BAR domains are functionally diverse and highlight the functional importance of proteins directly regulating membrane deformation for proper neuronal migration and morphogenesis.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Neurogénesis , Neuronas/citología , Animales , Movimiento Celular , Corteza Cerebral/citología , Corteza Cerebral/embriología , Proteínas Activadoras de GTPasa , Ratones , Seudópodos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA