Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22271438

RESUMEN

Interferons (IFNs) are antiviral cytokines induced very early after SARS-CoV-2 infection and are crucial for viral clearance, shaping immunity, and preventing the development of severe COVID-19. We previously demonstrated that a single injection of peginterferon-lambda1 (PEG-IFN-{lambda}) accelerated viral clearance in COVID-19 patients. To determine if the rapid viral decline was mediated by enhanced immunity, we assessed in vivo responses to PEG-IFN-{lambda} by single cell RNA sequencing and measured SARS-CoV-2-specific T cell and antibody responses between placebo and PEG-IFN-{lambda}-treated patients. PEG-IFN-{lambda} treatment induced interferon stimulated genes in peripheral immune cells expressing IFNLR1, with plasmacytoid dendritic cells having the greatest response, followed by B cells. PEG-IFN-{lambda} did not significantly affect SARS-CoV-2-specific antibody levels in plasma or the magnitude or functionality of virus-specific T cells. However, we identified a delayed T cell response in older adults, suggesting that PEG-IFN-{lambda} can overcome the delay in adaptive immunity to accelerate viral clearance in patients most at risk for severe disease. Taken together, PEG-IFN-{lambda} offers an early COVID-19 treatment option for outpatients to boost innate antiviral defenses without dampening peripheral SARS-CoV-2 adaptive immunity

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21260221

RESUMEN

Genomic regions have been associated with COVID-19 susceptibility and outcomes, including the chr12q24.13 locus encoding antiviral proteins OAS1-3. Here, we report genetic, functional, and clinical insights into genetic associations within this locus. In Europeans, the risk of hospitalized vs. non-hospitalized COVID-19 was associated with a single 19Kb-haplotype comprised of 76 OAS1 variants included in a 95% credible set within a large genomic fragment introgressed from Neandertals. The risk haplotype was also associated with impaired spontaneous but not treatment-induced SARS-CoV-2 clearance in a clinical trial with pegIFN-{lambda}1. We demonstrate that two exonic variants, rs10774671 and rs1131454, affect splicing and nonsense-mediated decay of OAS1. We suggest that genetically-regulated loss of OAS1 expression contributes to impaired spontaneous clearance of SARS-CoV-2 and elevated risk of hospitalization for COVID-19. Our results provide the rationale for further clinical studies using interferons to compensate for impaired spontaneous SARS-CoV-2 clearance, particularly in carriers of the OAS1 risk haplotypes.

3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20228098

RESUMEN

BackgroundThere are currently no effective treatments for outpatients with coronavirus disease 2019 (COVID-19). Interferon-lambda-1 is a Type III interferon involved in the innate antiviral response with activity against respiratory pathogens. MethodsIn this double-blind, placebo-controlled trial, outpatients with laboratory-confirmed COVID-19 were randomized to a single subcutaneous injection of peginterferon-lambda 180g or placebo within 7 days of symptom onset or first positive swab if asymptomatic. The primary endpoint was proportion negative for SARS-CoV-2 RNA on Day 7 post-injection. FindingsThere were 30 patients per arm, with median baseline SARS-CoV-2 viral load of 6.71 (IQR 1.3-8.0) log copies/mL. The decline in SARS-CoV-2 RNA was greater in those treated with peginterferon-lambda than placebo (p=0.04). On Day 7, 24 participants (80%) in the peginterferon-lambda group had an undetectable viral load compared to 19 (63%) in the placebo arm (p=0.15). After controlling for baseline viral load, peginterferon lambda treatment resulted in a 4.12-fold (95CI 1.15-16.7, p=0.029) higher likelihood of viral clearance by Day 7. Of those with baseline viral load above 10E6 copies/mL, 15/19 (79%) in the peginterferon-lambda group were undetectable on Day 7 compared to 6/16 (38%) in the placebo group (p=0.012). Adverse events were similar between groups with only mild reversible transaminase elevations more frequently observed in the peginterferon-lambda group. InterpretationPeginterferon-lambda accelerated viral decline in outpatients with COVID-19 resulting in a greater proportion with viral clearance by Day 7, particularly in those with high baseline viral load. Peginterferon-lambda may have potential to prevent clinical deterioration and shorten duration of viral shedding. (NCT04354259) FundingThis study was supported by the Toronto COVID-19 Action Initiative, University of Toronto and the Ontario First COVID-19 Rapid Research Fund. Medication was supplied by Eiger BioPharma. Research in ContextTreatment trials for COVID-19 have largely focused on hospitalized patients and no treatments are approved for people with mild to moderate disease in the outpatient setting. A number of studies in ambulatory populations have been registered but no controlled studies in the outpatient setting have been reported to date (Pubmed Search October 20, 2020, COVID-19 treatment; controlled trials). Uncontrolled case series of hydroxychloroquine with or without azithromycin have been reported with mixed results but no clear signal of efficacy and some concerns raised about cardiac toxicity. Treamtent in the outpatient setting has potential to prevent infected individuals from deteriorating and perhaps more importantly, may shorten the duration of viral shedding, reducing the risk of transmission and the duration required for self-isolation, with significant public health and societal impact. Added value of this studyThis is the first study to show an antiviral effect in outpatients with COVID-19. After controlling for baseline viral load, those treated with peginterferon-lambda had a 4.12-fold (95%CI 1.15-16.7, p=0.029) higher odds of viral clearance by Day 7 compared to those who received placebo. The viral load decline was faster with pegterferon-lambda and the effect was most pronounced in those with high viral loads. In individuals with a baseline viral load of 10E6 copies/mL or higher, 15/19 (79%) in the peginterferon-lambda arm cleared by Day 7 compared to 6/16 (38%) (p=0.012) in the placebo arm (OR 6.25, 95%CI 1.49-31.1, p=0.012), translating to a median time to viral clearance of 7 days (95%CI 6.2-7.8 days) with peginterferon-lambda compared to 10 days (95%CI 7.8-12.2 days) with placebo (p=0.038). Those with low viral loads (<10E6 copies/mL) cleared quickly in both groups. Peginterferon-lambda was well-tolerated with a similar side effect profile to placebo and no concerning laboratory adverse events. Implications of all available evidenceThere is no currently approved therapy for outpatients with COVID-19. This study showed that peginterferon-lambda accelerated viral clearance, particularly in those with high baseline viral loads, highlighting the importance of quantitative viral load testing in the evaluation of antiviral agents for COVID-19. Treatment early in the course of disease may prevent clinical deterioration and shorenting of the duration of viral shedding may have important public health impact by limiting transmission and reducing the duration required for self-isolation. Additional trials of peginterferon-lambda and other antiviral strategies in the outpatient setting are required.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...